Patagium in the context of "Limb (anatomy)"

⭐ In the context of limbs, what adaptation allows some animals, such as bats and birds, to achieve flight?

Ad spacer

⭐ Core Definition: Patagium

The patagium (pl.: patagia) is a membranous body part that assists an animal in obtaining lift when gliding or flying. The structure is found in extant and extinct groups of flying and gliding animals including bats, theropod dinosaurs (including birds and some dromaeosaurs), pterosaurs, gliding mammals, some flying lizards, and flying frogs. The patagium that stretches between an animal's hind limbs is called the uropatagium (especially in bats) or the interfemoral membrane.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Patagium in the context of Limb (anatomy)

A limb (from Old English lim, meaning "body part") is a jointed, muscled appendage of a tetrapod vertebrate animal used for weight-bearing, terrestrial locomotion and physical interaction with other objects. The distalmost portion of a limb is known as its extremity. The limbs' bony endoskeleton, known as the appendicular skeleton, is homologous among all tetrapods, who use their limbs for walking, running and jumping, swimming, climbing, grasping, touching and striking.

All tetrapods have four limbs that are organized into two bilaterally symmetrical pairs, with one pair at each end of the torso, which phylogenetically correspond to the four paired fins (pectoral and pelvic fins) of their fish (sarcopterygian) ancestors. The cranial pair (i.e. closer to the head) of limbs are known as the forelimbs or front legs, and the caudal pair (i.e. closer to the tail or coccyx) are the hindlimbs or back legs. In animals with a more erect bipedal posture (mainly hominid primates, particularly humans), the forelimbs and hindlimbs are often called upper and lower limbs, respectively. The fore-/upper limbs are connected to the thoracic cage via the pectoral/shoulder girdles, and the hind-/lower limbs are connected to the pelvis via the hip joints. Many animals, especially the arboreal species, have prehensile forelimbs adapted for grasping and climbing, while some (mostly primates) can also use hindlimbs for grasping. Some animals (birds and bats) have expanded forelimbs (and sometimes hindlimbs as well) with specialized feathers or membranes to achieve lift and fly. Aquatic and semiaquatic tetrapods usually have limb features (such as webbings) adapted to better provide propulsion in water, while marine mammals and sea turtles have convergently evolved flattened, paddle-like limbs known as flippers.

↓ Explore More Topics
In this Dossier

Patagium in the context of Terrestrial animal

Terrestrial animals are animals that live predominantly or entirely on land (e.g., cats, chickens, ants, most spiders), as compared with aquatic animals (e.g., fish, whales, octopuses, lobsters, etc.), who live predominantly or entirely in bodies of water; and semiaquatic animals (e.g., crocodilians, seals, platypus and most amphibians), who inhabit coastal, riparian or wetland areas and rely on both aquatic and terrestrial habitats. While most insects (who constitute over half of all known species in the animal kingdom) are terrestrial, some groups, such as mosquitoes and dragonflies, spend their egg and larval stages in water but emerge as fully terrestrial adults (imagos) after completing metamorphosis.

Terrestrial animals conduct respiratory gas exchange directly with the atmosphere, typically via specialized respiratory organs known as lungs, or via cutaneous respiration across the skin. They have also evolved homeostatic features such as impermeable cuticles that can restrict fluid loss, temperature fluctuations and infection, and an excretory system that can filter out nitrogenous waste in the form of urea or uric acid, in contrast to the ammonia-based excretion of aquatic animals. Without the buoyancy of an aqueous environment to support their weight, they have evolved robust skeletons that can hold up their body shape, as well as powerful appendages known as legs or limbs to facilitate terrestrial locomotion, although some perform limbless locomotion using body surface projections such as scales and setae. Some terrestrial animals even have wings or membranes that act as airfoils to generate lift, allowing them to fly and/or glide as airborne animals.

↑ Return to Menu

Patagium in the context of Flight

Flight or flying is the motion of an object through an atmosphere or through the vacuum of space, in this case also called spaceflight, without contacting any planetary surface. This can be achieved by generating aerodynamic lift associated with gliding or propulsive thrust, aerostatically using buoyancy, or by ballistic movement.

Many things can fly, from animal aviators such as birds, bats and insects, to natural gliders/parachuters such as patagial animals, anemochorous seeds and ballistospores, to human inventions like aircraft (airplanes, helicopters, airships, balloons, etc.) and rockets which may propel spacecraft and spaceplanes.

↑ Return to Menu

Patagium in the context of Gliding flight

Gliding flight is heavier-than-air flight without the use of thrust; the term volplaning also refers to this mode of flight in animals. It is employed by gliding animals and by aircraft such as gliders. This mode of flight involves flying a significant distance horizontally compared to its descent and therefore can be distinguished from a mostly straight downward descent like a round parachute.

Although the human application of gliding flight usually refers to aircraft designed for this purpose, most powered aircraft are capable of gliding without engine power. As with sustained flight, gliding generally requires the application of an airfoil, such as the wings on aircraft or birds, or the gliding membrane of a gliding possum. However, gliding can be achieved with a flat (uncambered) wing, as with a simple paper plane, or even with card-throwing. However, some aircraft with lifting bodies and animals such as the flying snake can achieve gliding flight without any wings by creating a flattened surface underneath.

↑ Return to Menu

Patagium in the context of Bat

Bats (order Chiroptera /kˈrɒptərə/) are winged mammals; the only mammals capable of true and sustained flight. Bats are more agile in flight than most birds, flying with their long spread-out digits covered with a thin membrane or patagium. The smallest bat, and one of the smallest extant mammals, is Kitti's hog-nosed bat, which is 29–33 mm (1.1–1.3 in) in length, 150 mm (5.9 in) across the forearm and 2 g (0.071 oz) in mass. The largest bats are the flying foxes, with the giant golden-crowned flying fox (Acerodon jubatus) reaching a weight of 1.5 kg (3.3 lb) and having a wingspan of 1.6 m (5 ft 3 in).

The second largest order of mammals after rodents, bats comprise about 20% of all classified mammal species worldwide, with at least 1,500 known species. These were traditionally divided into two suborders: the largely fruit-eating megabats, and the echolocating microbats. But more recent evidence has supported dividing the order into Yinpterochiroptera and Yangochiroptera, with megabats as members of the former along with several species of microbats. Many bats are insectivores, and most of the rest are frugivores (fruit-eaters) or nectarivores (nectar-eaters). A few species feed on animals other than insects; for example, the vampire bats are haematophagous (feeding on blood). Most bats are nocturnal, and many roost in caves or other refuges; it is uncertain whether bats have these behaviours to escape predators. Bats are distributed globally in all except the coldest regions. They are important in their ecosystems for pollinating flowers and dispersing seeds as well as controlling insect populations.

↑ Return to Menu

Patagium in the context of Flying squirrel

Flying squirrels (scientifically known as Pteromyini or Petauristini) are a tribe of 50 species of squirrels in the family Sciuridae. Despite their name, they are not in fact capable of full flight in the same way as birds or bats, but they are able to glide from one tree to another with the aid of a patagium, a furred skin membrane that stretches from wrist to ankle. Their long tails also provide stability as they glide. Anatomically they are very similar to other squirrels with a number of adaptations to suit their lifestyle; their limb bones are longer and their hand bones, foot bones, and distal vertebrae are shorter. Flying squirrels are able to steer and exert control over their glide path with their limbs and tail.

Molecular studies have shown that flying squirrels are monophyletic (having a common ancestor with no non-flying descendants) and originated some 18–20 million years ago. The genus Paracitellus is the earliest lineage to the flying squirrel dating back to the late Oligocene era. Most are nocturnal and omnivorous, eating fruit, seeds, buds, flowers, insects, gastropods, spiders, fungi, bird's eggs, tree sap and young birds. The young are born in a nest and are at first naked and helpless. They are cared for by their mother and by five weeks are able to practice gliding skills so that by ten weeks they are ready to leave the nest.

↑ Return to Menu

Patagium in the context of Flying lizard

Draco is a genus of agamid lizards that are also known as flying lizards, flying dragons or gliding lizards. These lizards are capable of gliding flight via membranes that may be extended to create wings (patagia), formed by a support structure from an enlarged set of ribs. They are arboreal insectivores.

While not capable of powered flight they often obtain lift in the course of their gliding flights. Glides as long as 60 m (200 ft) have been recorded, over which the animal loses only 10 m (33 ft) in height which makes for a glide ratio of 6:1. This is done by a lizard of only around 20 cm (7.9 in) in total length, tail included. They are found across Southeast Asia and Southern India and are fairly common in forests, areca gardens, teak plantations and shrub jungle.

↑ Return to Menu