Keck Observatory in the context of "List of largest optical reflecting telescopes"

Play Trivia Questions online!

or

Skip to study material about Keck Observatory in the context of "List of largest optical reflecting telescopes"

Ad spacer

⭐ Core Definition: Keck Observatory

The W. M. Keck Observatory is an astronomical observatory with two telescopes at an elevation of 4,145 meters (13,600 ft) near the summit of Mauna Kea in the U.S. state of Hawaii. Both telescopes have 10 m (33 ft) aperture primary mirrors, and, when completed in 1993 (Keck I) and 1996 (Keck II), they were the largest optical reflecting telescopes in the world. They have been the third and fourth largest since 2006.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Keck Observatory in the context of High-Z Supernova Search Team

The High-Z Supernova Search Team was an international cosmology collaboration which used Type Ia supernovae to chart the expansion of the universe. The team was formed in 1994 by Brian P. Schmidt, then a post-doctoral research associate at Harvard University, and Nicholas B. Suntzeff, a staff astronomer at the Cerro Tololo Inter-American Observatory (CTIO) in Chile. The original team submitted a proposal on September 29, 1994 called A Pilot Project to Search for Distant Type Ia Supernova to the CTIO. The team on the first observing proposal comprised: Nicholas Suntzeff (PI); Brian Schmidt (Co-I); (other Co-Is) R. Chris Smith, Robert Schommer, Mark M. Phillips, Mario Hamuy, Roberto Aviles, Jose Maza, Adam Riess, Robert Kirshner, Jason Spyromilio, and Bruno Leibundgut. The project was awarded four nights of telescope time on the CTIO Víctor M. Blanco Telescope on the nights of February 25, 1995, and March 6, 24, and 29, 1995. The pilot project led to the discovery of supernova SN1995Y. In 1995, the HZT elected Brian P. Schmidt of the Mount Stromlo Observatory which is part of the Australian National University to manage the team.

The team expanded to roughly 20 astronomers located in the United States, Europe, Australia, and Chile. They used the Víctor M. Blanco telescope to discover Type Ia supernovae out to redshifts of z = 0.9. The discoveries were verified with spectra taken mostly from the telescopes of the Keck Observatory, and the European Southern Observatory.

↑ Return to Menu

Keck Observatory in the context of Hale reflector

The Hale Telescope is a 200-inch (5.1 m), f/3.3 reflecting telescope at the Palomar Observatory in San Diego County, California, US, named after astronomer George Ellery Hale. With funding from the Rockefeller Foundation in 1928, he orchestrated the planning, design, and construction of the observatory, but with the project ending up taking 20 years he did not live to see its commissioning. The Hale was groundbreaking for its time, with double the diameter of the second-largest telescope, and pioneered many new technologies in telescope mount design and in the design and fabrication of its large aluminum coated "honeycomb" low thermal expansion Pyrex mirror. It was completed in 1949 and is still in active use.

The Hale Telescope represented the technological limit in building large optical telescopes for over 30 years. It was the largest telescope in the world from its construction in 1949 until the Soviet BTA-6 was built in 1976, and the second largest until the construction of the Keck Observatory Keck 1 in Hawaii in 1993.

↑ Return to Menu

Keck Observatory in the context of Hiʻiaka (moon)

Hiʻiaka, formal designation (136108) Haumea I, is the larger, outer moon of the trans-Neptunian dwarf planet Haumea. Discovered by Michael E. Brown and the Keck Observatory adaptive optics team on 26 January 2005, it is named after Hiʻiaka, the patron goddess of the Big Island of Hawaii and one of the daughters of Haumea. The moon follows a slightly elliptical orbit around Haumea every 49.5 days, at a distance of 49,400 km (30,700 mi).

Hiʻiaka is an elongated and irregularly shaped body with a mean diameter of 369 km (229 mi), making it the sixth-largest known moon of a trans-Neptunian object. It has a very low bulk density between 0.46 g/cm and 0.69 g/cm, which indicates it is mostly made of loosely-packed water ice and rock. Telescope observations have shown that Hiʻiaka has a highly reflective surface made of crystalline water ice, much like Haumea itself. Hiʻiaka rotates about its axis every 9.68 hours, and appears to rotate sideways with respect to its orbit around Haumea. Like its smaller sibling moon Namaka, Hiʻiaka is believed to be a fragment of Haumea that was ejected in the aftermath of a giant impact 4.4 billion years ago.

↑ Return to Menu

Keck Observatory in the context of Namaka (moon)

Namaka (full designation (136108) Haumea II) is the smaller, inner moon of the trans-Neptunian dwarf planet Haumea. Discovered by Michael E. Brown and the Keck Observatory adaptive optics team in the fall of 2005, it is named after Nāmaka, a water spirit and one of the daughters of Haumea in Hawaiian mythology. Namaka follows a highly elliptical orbit that is highly tilted by roughly 13 degrees with respect to Haumea's equator. Namaka is heavily perturbed by both the gravitational influence of Haumea's larger, outer moon Hiʻiaka and the variable gravitational field of Haumea's elongated shape.

With a diameter of around 150 km (93 mi), Namaka is predicted to have an irregular shape and a chaotic rotation. It has a reflective surface made of fresh water ice, similar to that of Haumea and Hiʻiaka. Like Hiʻiaka, Namaka is believed to be a fragment of Haumea that was ejected in the aftermath of a giant impact 4.4 billion years ago.

↑ Return to Menu

Keck Observatory in the context of SN 2006gy

SN 2006gy was an extremely energetic supernova, also referred to as a hypernova, that was discovered on September 18, 2006. It was first observed by Robert Quimby and P. Mondol, and then studied by several teams of astronomers using facilities that included the Chandra, Lick, and Keck Observatories. In May 2007, NASA and several of the astronomers announced the first detailed analyses of the supernova, describing it as the "brightest stellar explosion ever recorded". In October 2007, Quimby announced that SN 2005ap had broken SN 2006gy's record as the brightest-ever recorded supernova, and several subsequent discoveries are brighter still. Time magazine listed the discovery of SN 2006gy as third in its Top 10 Scientific Discoveries for 2007.

↑ Return to Menu