Kanamycin in the context of Aminoglycoside


Kanamycin in the context of Aminoglycoside

⭐ Core Definition: Kanamycin

Kanamycin A, often referred to simply as kanamycin, is an antibiotic used to treat severe bacterial infections and tuberculosis. It is not a first line treatment. It is used by mouth, injection into a vein, or injection into a muscle. Kanamycin is recommended for short-term use only, usually from 7 to 10 days. Since antibiotics only show activity against bacteria, it is ineffective in viral infections.

Common side effects include hearing and balance problems. Kidney problems may also occur. Kanamycin is not recommended during pregnancy as it may harm the baby. It is likely safe during breastfeeding. Kanamycin is in the aminoglycoside family of medications. It has the weakest antibacterial capabilities of all compounds in this family when used clinically, which is partially due to its increased toxicity in comparison to other aminoglycosides. It works by blocking the production of proteins that are required for bacterial survival.

↓ Menu
HINT:

In this Dossier

Kanamycin in the context of Genetically modified organism

A genetically modified organism (GMO) is any organism whose genetic material has been altered using genetic engineering techniques. The exact definition of a genetically modified organism and what constitutes genetic engineering varies, with the most common being an organism altered in a way that "does not occur naturally by mating and/or natural recombination". A wide variety of organisms have been genetically modified (GM), including animals, plants, and microorganisms.

Genetic modification can include the introduction of new genes or enhancing, altering, or knocking out endogenous genes. In some genetic modifications, genes are transferred within the same species, across species (creating transgenic organisms), and even across kingdoms. Creating a genetically modified organism is a multi-step process. Genetic engineers must isolate the gene they wish to insert into the host organism and combine it with other genetic elements, including a promoter and terminator region and often a selectable marker. A number of techniques are available for inserting the isolated gene into the host genome. Recent advancements using genome editing techniques, notably CRISPR, have made the production of GMOs much simpler. Herbert Boyer and Stanley Cohen made the first genetically modified organism in 1973, a bacterium resistant to the antibiotic kanamycin. The first genetically modified animal, a mouse, was created in 1974 by Rudolf Jaenisch, and the first plant was produced in 1983. In 1994, the Flavr Savr tomato was released, the first commercialized genetically modified food. The first genetically modified animal to be commercialized was the GloFish (2003) and the first genetically modified animal to be approved for food use was the AquAdvantage salmon in 2015.

View the full Wikipedia page for Genetically modified organism
↑ Return to Menu

Kanamycin in the context of Selectable marker

A selectable marker is a gene introduced into cells, especially bacteria or cells in culture, which confers one or more traits suitable for artificial selection. They are a type of reporter gene used in laboratory microbiology, molecular biology, and genetic engineering to indicate the success of a transfection or transformation or other procedure meant to introduce foreign DNA into a cell. Selectable markers are often antibiotic resistance genes: bacteria subjected to a procedure by which exogenous DNA containing an antibiotic resistance gene (usually alongside other genes of interest) has been introduced are grown on a medium containing an antibiotic, such that only those bacterial cells which have successfully taken up and expressed the introduced genetic material, including the gene which confers antibiotic resistance, can survive and produce colonies. The genes encoding resistance to antibiotics such as ampicillin, chloramphenicol, tetracycline, kanamycin, etc., are all widely used as selectable markers for molecular cloning and other genetic engineering techniques in E. coli.

View the full Wikipedia page for Selectable marker
↑ Return to Menu

Kanamycin in the context of Kanamycin kinase

Aminoglycoside-3'-phosphotransferase (APH(3')), also known as aminoglycoside kinase, is an enzyme that primarily catalyzes the addition of phosphate from ATP to the 3'-hydroxyl group of a 4,6-disubstituted aminoglycoside, such as kanamycin. However, APH(3') has also been found to phosphorylate at the 5'-hydroxyl group in 4,5-disubstituted aminoglycosides, which lack a 3'-hydroxyl group, and to diphosphorylate hydroxyl groups in aminoglycosides that have both 3'- and 5'-hydroxyl groups. Primarily positively charged at biological conditions, aminoglycosides bind to the negatively charged backbone of nucleic acids to disrupt protein synthesis, effectively inhibiting bacterial cell growth. APH(3') mediated phosphorylation of aminoglycosides effectively disrupts their mechanism of action, introducing a phosphate group that reduces their binding affinity due to steric hindrances and unfavorable electrostatic interactions. APH(3') is primarily found in certain species of gram-positive bacteria.

This enzyme belongs to the family of transferases, specifically those transferring phosphorus-containing groups (phosphotransferases) with an alcohol group as acceptor. The systematic name of this enzyme class is ATP:kanamycin 3'-O-phosphotransferase. This enzyme is also called neomycin-kanamycin phosphotransferase.

View the full Wikipedia page for Kanamycin kinase
↑ Return to Menu