Jupiter in the context of Mars trojan


Jupiter in the context of Mars trojan

Jupiter Study page number 1 of 11

Play TriviaQuestions Online!

or

Skip to study material about Jupiter in the context of "Mars trojan"


⭐ Core Definition: Jupiter

Jupiter is the fifth planet from the Sun and the largest in the Solar System. It is a gas giant with a mass nearly 2.5 times that of all the other planets in the Solar System combined and slightly less than one-thousandth the mass of the Sun. Its diameter is 11 times that of Earth and a tenth that of the Sun. Jupiter orbits the Sun at a distance of 5.20 AU (778.5 Gm), with an orbital period of 11.86 years. It is the third-brightest natural object in the Earth's night sky, after the Moon and Venus, and has been observed since prehistoric times. Its name derives from that of Jupiter, the chief deity of ancient Roman religion.

Jupiter was the first of the Sun's planets to form, and its inward migration during the primordial phase of the Solar System affected much of the formation history of the other planets. Jupiter's atmosphere consists of 76% hydrogen and 24% helium by mass, with a denser interior. It contains traces of the elements carbon, oxygen, sulfur, neon, and compounds such as ammonia, water vapour, phosphine, hydrogen sulfide, and hydrocarbons. Jupiter's helium abundance is 80% of the Sun's, similar to Saturn's composition.

↓ Menu
HINT:

In this Dossier

Jupiter in the context of Voyager program

The Voyager program is an American scientific program that employs two interstellar probes, Voyager 1 and Voyager 2. They were launched in 1977 to take advantage of a favorable planetary alignment to explore the two gas giants Jupiter and Saturn and potentially also the ice giants, Uranus and Neptune—to fly near them while collecting data for transmission back to Earth. After Voyager 1 successfully completed its flyby of Saturn and its moon Titan, it was decided to send Voyager 2 on flybys of Uranus and Neptune.

After the planetary flybys were complete, decisions were made to keep the probes in operation to explore interstellar space and the outer regions of the Solar System. On 25 August 2012, data from Voyager 1 indicated that it had entered interstellar space. On 5 November 2019, data from Voyager 2 indicated that it also had entered interstellar space. On 4 November 2019, scientists reported that on 5 November 2018, the Voyager 2 probe had officially reached the interstellar medium (ISM), a region of outer space beyond the influence of the solar wind, as did Voyager 1 in 2012. In August 2018, NASA confirmed, based on results by the New Horizons spacecraft, the existence of a "hydrogen wall" at the outer edges of the Solar System that was first detected in 1992 by the two Voyager spacecraft.

View the full Wikipedia page for Voyager program
↑ Return to Menu

Jupiter in the context of Planets

A planet is a large, rounded astronomical body that is generally required to be in orbit around a star, stellar remnant, or brown dwarf, and is not one itself. The Solar System has eight planets by the most restrictive definition of the term: the terrestrial planets Mercury, Venus, Earth, and Mars, and the giant planets Jupiter, Saturn, Uranus, and Neptune. The best available theory of planet formation is the nebular hypothesis, which posits that an interstellar cloud collapses out of a nebula to create a young protostar orbited by a protoplanetary disk. Planets grow in this disk by the gradual accumulation of material driven by gravity, a process called accretion.

The word planet comes from the Greek πλανήται (planḗtai) 'wanderers'. In antiquity, this word referred to the Sun, Moon, and five points of light visible to the naked eye that moved across the background of the stars—namely, Mercury, Venus, Mars, Jupiter, and Saturn. Planets have historically had religious associations: multiple cultures identified celestial bodies with gods, and these connections with mythology and folklore persist in the schemes for naming newly discovered Solar System bodies. Earth itself was recognized as a planet when heliocentrism supplanted geocentrism during the 16th and 17th centuries.

View the full Wikipedia page for Planets
↑ Return to Menu

Jupiter in the context of Asteroid

An asteroid is a minor planet—an object larger than a meteoroid that is neither a planet nor an identified comet—that orbits within the inner Solar System or is co-orbital with Jupiter (Trojan asteroids). Asteroids are rocky, metallic, or icy bodies with no atmosphere, and are broadly classified into C-type (carbonaceous), M-type (metallic), or S-type (silicaceous). The size and shape of asteroids vary significantly, ranging from small rubble piles under a kilometer across to Ceres, a dwarf planet almost 1000 km in diameter. A body is classified as a comet, not an asteroid, if it shows a coma (tail) when warmed by solar radiation, although recent observations suggest a continuum between these types of bodies.

Of the roughly one million known asteroids, the greatest number are located between the orbits of Mars and Jupiter, approximately 2 to 4 astronomical units (AU) from the Sun, in a region known as the main asteroid belt. The total mass of all the asteroids combined is only 3% that of Earth's Moon. The majority of main belt asteroids follow slightly elliptical, stable orbits, revolving in the same direction as the Earth and taking from three to six years to complete a full circuit of the Sun.

View the full Wikipedia page for Asteroid
↑ Return to Menu

Jupiter in the context of Galileo Galilei

Galileo di Vincenzo Bonaiuti de' Galilei (15 February 1564 – 8 January 1642), commonly referred to as Galileo Galilei (/ˌɡælɪˈl ˌɡælɪˈl/ GAL-il-AY-oh GAL-il-AY, US also /ˌɡælɪˈl -/ GAL-il-EE-oh -⁠, Italian: [ɡaliˈlɛːo ɡaliˈlɛi]) or mononymously as Galileo, was an Italian astronomer, physicist, and engineer, sometimes described as a polymath. He was born in the city of Pisa, then part of the Duchy of Florence. Galileo has been called the father of observational astronomy, modern-era classical physics, the scientific method, and modern science.

Galileo studied speed and velocity, gravity and free fall, the principle of relativity, inertia, projectile motion, and also worked in applied science and technology, describing the properties of the pendulum and "hydrostatic balances". He was one of the earliest Renaissance developers of the thermoscope and the inventor of various military compasses. With an improved telescope he built, he observed the stars of the Milky Way, the phases of Venus, the four largest satellites of Jupiter, Saturn's rings, lunar craters, and sunspots. He also built an early microscope.

View the full Wikipedia page for Galileo Galilei
↑ Return to Menu

Jupiter in the context of Wuxing (Chinese philosophy)

Wuxing (Chinese: 五行; pinyin: wǔxíng; Jyutping: Ng Hang), translated as Five Moving Ones, Five Circulations, Five Types of Energy, Five Elements, Five Transformations, Five Phases or Five Agents, is a fivefold conceptual scheme used in many traditional Chinese fields of study to explain a wide array of phenomena, including terrestrial and celestial relationships, influences, and cycles, that characterise the interactions and relationships within science, medicine, politics, religion and social relationships and education within Chinese culture.

The Five Moving Ones are traditionally associated with the classical planets: Mars, Mercury, Jupiter, Venus, and Saturn as depicted in the etymological section below. In ancient Chinese astronomy and astrology, that spread throughout East Asia, was a reflection of the seven-day planetary order of Fire, Water, Wood, Metal, Earth. When in their "heavenly stems" generative cycle as represented in the below cycles section and depicted in the diagram above running consecutively clockwise (Wood, Fire, Earth, Metal, Water). When in their overacting destructive arrangement of Wood, Earth, Water, Fire, Metal, natural disasters, calamity, illnesses and disease will ensue.

View the full Wikipedia page for Wuxing (Chinese philosophy)
↑ Return to Menu

Jupiter in the context of Hydrothermal vent

Hydrothermal vents are fissures on the seabed from which geothermally heated water discharges. They are commonly found near volcanically active places, areas where tectonic plates are moving apart at mid-ocean ridges, ocean basins, and hotspots. The dispersal of hydrothermal fluids throughout the global ocean at active vent sites creates hydrothermal plumes. Hydrothermal deposits are rocks and mineral ore deposits formed by the action of hydrothermal vents.

Hydrothermal vents exist because the Earth is both geologically active and has large amounts of water on its surface and within its crust. Under the sea, they may form features called black smokers or white smokers, which deliver a wide range of elements to the world's oceans, thus contributing to global marine biogeochemistry. Relative to the majority of the deep sea, the areas around hydrothermal vents are biologically more productive, often hosting complex communities fueled by the chemicals dissolved in the vent fluids. Chemosynthetic bacteria and archaea found around hydrothermal vents form the base of the food chain, supporting diverse organisms including giant tube worms, clams, limpets, and shrimp. Active hydrothermal vents are thought to exist on Jupiter's moon Europa and Saturn's moon Enceladus, and it is speculated that ancient hydrothermal vents once existed on Mars.

View the full Wikipedia page for Hydrothermal vent
↑ Return to Menu

Jupiter in the context of Atmosphere

An atmosphere is a layer of gases that envelop an astronomical object, held in place by the gravity of the object. The name originates from Ancient Greek ἀτμός (atmós) 'vapour, steam' and σφαῖρα (sphaîra) 'sphere'. An object acquires most of its atmosphere during its primordial epoch, either by accretion of matter or by outgassing of volatiles. The chemical interaction of the atmosphere with the solid surface can change its fundamental composition, as can photochemical interaction with the Sun. A planet retains an atmosphere for longer durations when the gravity is high and the temperature is low. The solar wind works to strip away a planet's outer atmosphere, although this process is slowed by a magnetosphere. The further a body is from the Sun, the lower the rate of atmospheric stripping.

Aside from Mercury, all Solar System planets have substantial atmospheres, as does the dwarf planet Pluto and the moon Titan. The high gravity and low temperature of Jupiter and the other gas giant planets allow them to retain massive atmospheres of mostly hydrogen and helium. Lower mass terrestrial planets orbit closer to the Sun, and so mainly retain higher density atmospheres made of carbon, nitrogen, and oxygen, with trace amounts of inert gas. Atmospheres have been detected around exoplanets such as HD 209458 b and Kepler-7b.

View the full Wikipedia page for Atmosphere
↑ Return to Menu

Jupiter in the context of Moon

The Moon is the only natural satellite of Earth. It orbits around Earth at an average distance of 384,399 kilometres (238,854 mi), a distance roughly 30 times the width of Earth. It completes an orbit (lunar month) in relation to Earth and the Sun (synodically) every 29.5 days. The Moon and Earth are bound by gravitational attraction, which is stronger on their facing sides. The resulting tidal forces are the main driver of Earth's tides, and have pulled the Moon to always face Earth with the same near side. This tidal locking effectively synchronizes the Moon's rotation period (lunar day) to its orbital period (lunar month).

In geophysical terms, the Moon is a planetary-mass object or satellite planet. Its mass is 1.2% that of the Earth, and its diameter is 3,474 km (2,159 mi), roughly one-quarter of Earth's (about as wide as the contiguous United States). Within the Solar System, it is larger and more massive than any known dwarf planet, and the fifth-largest and fifth-most massive moon, as well as the largest and most massive in relation to its parent planet. Its surface gravity is about one-sixth of Earth's, about half that of Mars, and the second-highest among all moons in the Solar System after Jupiter's moon Io. The body of the Moon is differentiated and terrestrial, with only a minuscule hydrosphere, atmosphere, and magnetic field. The lunar surface is covered in regolith dust, which mainly consists of the fine material ejected from the lunar crust by impact events. The lunar crust is marked by impact craters, with some younger ones featuring bright ray-like streaks. The Moon was volcanically active until 1.2 billion years ago, surfacing lava mostly on the thinner near side of the Moon, filling ancient craters, which through cooling formed the today prominently visible dark plains of basalt called maria ('seas'). The Moon formed out of material from Earth, ejected by a giant impact into Earth of a hypothesized Mars-sized body named Theia 4.51 billion years ago, not long after Earth's formation.

View the full Wikipedia page for Moon
↑ Return to Menu

Jupiter in the context of Classical planet

A classical planet is an astronomical object that is visible to the naked eye and moves across the sky and its backdrop of fixed stars (the common stars which seem still in contrast to the planets), appearing as wandering stars. Visible to humans on Earth there are seven classical planets (the seven luminaries). They are from brightest to dimmest: the Sun, the Moon, Venus, Jupiter, Mercury, Mars and Saturn.

Greek astronomers such as Geminus and Ptolemy recorded these classical planets during classical antiquity, introducing the term planet, which means 'wanderer' in Greek (πλάνης planēs and πλανήτης planētēs), expressing the fact that these objects move across the celestial sphere relative to the fixed stars. Therefore, the Greeks were the first to document the astrological connections to the planets' visual detail.

View the full Wikipedia page for Classical planet
↑ Return to Menu

Jupiter in the context of Solar System

The Solar System consists of the Sun and the bodies that orbit it (most prominently Earth), being a system of masses bound together by gravity. The name comes from Sōl, the Latin name for the Sun. It formed about 4.6 billion years ago when a dense region of a molecular cloud collapsed, creating the Sun and a protoplanetary disc from which the orbiting bodies assembled. The fusion of hydrogen into helium inside the Sun's core releases energy, which is primarily emitted through its outer photosphere. This creates a decreasing temperature gradient across the system. Over 99.86% of the Solar System's mass is located within the Sun.

The most massive objects that orbit the Sun are the eight planets. Closest to the Sun in order of increasing distance are the four terrestrial planetsMercury, Venus, Earth and Mars. These are the planets of the inner Solar System. Earth and Mars are the only planets in the Solar System which orbit within the Sun's habitable zone, where liquid water can exist on the surface. Beyond the frost line at about five astronomical units (AU), are two gas giantsJupiter and Saturn – and two ice giantsUranus and Neptune. These are the planets of the outer Solar System. Jupiter and Saturn possess nearly 90% of the non-stellar mass of the Solar System.

View the full Wikipedia page for Solar System
↑ Return to Menu

Jupiter in the context of Cyclone

In meteorology, a cyclone (/ˈs.kln/) is a large air mass that rotates around a strong center of low atmospheric pressure, counterclockwise in the Northern Hemisphere and clockwise in the Southern Hemisphere as viewed from above (opposite to an anticyclone). Cyclones are characterized by inward-spiraling winds that rotate about a zone of low pressure.

Cyclones have also been seen on planets other than the Earth, such as Mars, Jupiter, and Neptune. Cyclogenesis is the process of cyclone formation and intensification.

View the full Wikipedia page for Cyclone
↑ Return to Menu

Jupiter in the context of Greenhouse effect

The greenhouse effect occurs when heat-trapping gases in a planet's atmosphere prevent the planet from losing heat to space, raising its surface temperature. Surface heating can happen from an internal heat source (as in the case of Jupiter) or come from an external source, such as a host star. In the case of Earth, the Sun emits shortwave radiation (sunlight) that passes through greenhouse gases to heat the Earth's surface. In response, the Earth's surface emits longwave radiation that is mostly absorbed by greenhouse gases, reducing the rate at which the Earth can cool off.

Without the greenhouse effect, the Earth's average surface temperature would be as cold as −18 °C (−0.4 °F). This is of course much less than the 20th century average of about 14 °C (57 °F). In addition to naturally present greenhouse gases, burning of fossil fuels has increased amounts of carbon dioxide and methane in the atmosphere. As a result, global warming of about 1.2 °C (2.2 °F) has occurred since the Industrial Revolution, with the global average surface temperature increasing at a rate of 0.18 °C (0.32 °F) per decade since 1981.

View the full Wikipedia page for Greenhouse effect
↑ Return to Menu

Jupiter in the context of Asteroid belt

The asteroid belt is a torus-shaped region in the Solar System, centered on the Sun and roughly spanning the space between the orbits of the planets Jupiter and Mars. It contains a great many solid, irregularly shaped bodies called asteroids or minor planets. The identified objects are of many sizes, but much smaller than planets, and, on average, are about one million kilometers (or six hundred thousand miles) apart. This asteroid belt is also called the main asteroid belt or main belt to distinguish it from other asteroid populations in the Solar System.

The asteroid belt is the smallest and innermost circumstellar disc in the Solar System. Classes of small Solar System bodies in other regions are the near-Earth objects, the centaurs, the Kuiper belt objects, the scattered disc objects, the sednoids, and the Oort cloud objects. About 60% of the main belt mass is contained in the four largest asteroids: Ceres, Vesta, Pallas, and Hygiea. The total mass of the asteroid belt is estimated to be 3% that of the Moon.

View the full Wikipedia page for Asteroid belt
↑ Return to Menu

Jupiter in the context of Helium

Helium (from Greek: ἥλιος, romanizedhelios, lit.'sun') is a chemical element; it has symbol He and atomic number 2. It is a colorless, odorless, non-toxic, inert, monatomic gas and the first in the noble gas group in the periodic table. Its boiling point is the lowest among all the elements, and it does not have a melting point at standard pressures. It is the second-lightest and second-most abundant element in the observable universe, after hydrogen. It is present at about 24% of the total elemental mass, which is more than 12 times the mass of all the heavier elements combined. Its abundance is similar to this in both the Sun and Jupiter, because of the very high nuclear binding energy (per nucleon) of helium-4 with respect to the next three elements after helium. This helium-4 binding energy also accounts for why it is a product of both nuclear fusion and radioactive decay. The most common isotope of helium in the universe is helium-4, the vast majority of which was formed during the Big Bang. Large amounts of new helium are created by nuclear fusion of hydrogen in stars.

Helium was first detected as an unknown, yellow spectral line signature in sunlight during a solar eclipse in 1868 by Georges Rayet, Captain C. T. Haig, Norman R. Pogson, and Lieutenant John Herschel, and was subsequently confirmed by French astronomer Jules Janssen. Janssen is often jointly credited with detecting the element, along with Norman Lockyer. Janssen recorded the helium spectral line during the solar eclipse of 1868, while Lockyer observed it from Britain. However, only Lockyer proposed that the line was due to a new element, which he named after the Sun. The formal discovery of the element was made in 1895 by chemists Sir William Ramsay, Per Teodor Cleve, and Nils Abraham Langlet, who found helium emanating from the uranium ore cleveite, which is now not regarded as a separate mineral species, but as a variety of uraninite. In 1903, large reserves of helium were found in natural gas fields in parts of the United States, by far the largest supplier of the gas today.

View the full Wikipedia page for Helium
↑ Return to Menu

Jupiter in the context of Voyager 1

Voyager 1 is a space probe launched by NASA on September 5, 1977, as part of the Voyager program, to study the outer Solar System and the interstellar space beyond the Sun's heliosphere. It was launched 16 days after its twin, Voyager 2. It communicates through the NASA Deep Space Network (DSN) to receive routine commands and to transmit data to Earth. Real-time distance and velocity data are provided by NASA and JPL. At a distance of 170.02 AU (25.4 billion km; 15.8 billion mi) as of November 2025, it is the most distant human-made object from Earth. Voyager 1 is also projected to reach a distance of one light day from Earth in November of 2026.

The probe made flybys of Jupiter, Saturn, and Saturn's largest moon, Titan. NASA had a choice of either conducting a Pluto or Titan flyby. Exploration of Titan took priority because it was known to have a substantial atmosphere. Voyager 1 studied the weather, magnetic fields, and rings of the two gas giants and was the first probe to provide detailed images of their moons.

View the full Wikipedia page for Voyager 1
↑ Return to Menu

Jupiter in the context of Voyager 2

Voyager 2 is a space probe launched by NASA on August 20, 1977, as a part of the Voyager program. It was launched on a trajectory towards the gas giants (Jupiter and Saturn) and enabled further encounters with the ice giants (Uranus and Neptune). The only spacecraft to have visited either of the ice giant planets, it was the third of five spacecraft to achieve Solar escape velocity, which allowed it to leave the Solar System. Launched 16 days before its twin Voyager 1, the primary mission of the spacecraft was to study the outer planets and its extended mission is to study interstellar space beyond the Sun's heliosphere.

Voyager 2 successfully fulfilled its primary mission of visiting the Jovian system in 1979, the Saturnian system in 1981, Uranian system in 1986, and the Neptunian system in 1989. The spacecraft is in its extended mission of studying the interstellar medium. It is at a distance of 141.55 AU (21.2 billion km; 13.2 billion mi) from Earth as of November 2025.

View the full Wikipedia page for Voyager 2
↑ Return to Menu