In thermodynamics, the Joule–Thomson effect (also known as the Joule–Kelvin effect or Kelvin–Joule effect) describes the temperature change of a real gas or liquid (as differentiated from an ideal gas) when it is expanding; typically caused by the pressure loss from flow through a valve or porous plug while keeping it insulated so that no heat is exchanged with the environment. This procedure is called a throttling process or Joule–Thomson process. The effect is purely due to deviation from ideality, as any ideal gas has no JT effect.
At room temperature, all gases except hydrogen, helium, and neon cool upon expansion by the Joule–Thomson process when being throttled through an orifice; the temperature of hydrogen, helium and neon rises when they are forced through a porous plug at room temperature, but lowers when they are already at lower temperatures. The temperature at which the JT effect switches sign is the inversion temperature.