Joint probability distribution in the context of Marginal density


Joint probability distribution in the context of Marginal density

Joint probability distribution Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Joint probability distribution in the context of "Marginal density"


⭐ Core Definition: Joint probability distribution

Given random variables , that are defined on the same probability space, the multivariate or joint probability distribution for is a probability distribution that gives the probability that each of falls in any particular range or discrete set of values specified for that variable. In the case of only two random variables, this is called a bivariate distribution, but the concept generalizes to any number of random variables.

The joint probability distribution can be expressed in terms of a joint cumulative distribution function and either in terms of a joint probability density function (in the case of continuous variables) or joint probability mass function (in the case of discrete variables). These in turn can be used to find two other types of distributions: the marginal distribution giving the probabilities for any one of the variables with no reference to any specific ranges of values for the other variables, and the conditional probability distribution giving the probabilities for any subset of the variables conditional on particular values of the remaining variables.

↓ Menu
HINT:

In this Dossier

Joint probability distribution in the context of Likelihood

A likelihood function (often simply called the likelihood) measures how well a statistical model explains observed data by calculating the probability of seeing that data under different parameter values of the model. It is constructed from the joint probability distribution of the random variable that (presumably) generated the observations. When evaluated on the actual data points, it becomes a function solely of the model parameters.

In maximum likelihood estimation, the model parameter(s) or argument that maximizes the likelihood function serves as a point estimate for the unknown parameter, while the Fisher information (often approximated by the likelihood's Hessian matrix at the maximum) gives an indication of the estimate's precision.

View the full Wikipedia page for Likelihood
↑ Return to Menu

Joint probability distribution in the context of Stationary process

In mathematics and statistics, a stationary process (also called a strict/strictly stationary process or strong/strongly stationary process) is a stochastic process whose statistical properties, such as mean and variance, do not change over time. More formally, the joint probability distribution of the process remains the same when shifted in time. This implies that the process is statistically consistent across different time periods. Because many statistical procedures in time series analysis assume stationarity, non-stationary data are frequently transformed to achieve stationarity before analysis.

A common cause of non-stationarity is a trend in the mean, which can be due to either a unit root or a deterministic trend. In the case of a unit root, stochastic shocks have permanent effects, and the process is not mean-reverting. With a deterministic trend, the process is called trend-stationary, and shocks have only transitory effects, with the variable tending towards a deterministically evolving mean. A trend-stationary process is not strictly stationary but can be made stationary by removing the trend. Similarly, processes with unit roots can be made stationary through differencing.

View the full Wikipedia page for Stationary process
↑ Return to Menu

Joint probability distribution in the context of Kalman filter

In statistics and control theory, Kalman filtering (also known as linear quadratic estimation) is an algorithm that uses a series of measurements observed over time, including statistical noise and other inaccuracies, to produce estimates of unknown variables that tend to be more accurate than those based on a single measurement, by estimating a joint probability distribution over the variables for each time-step. The filter is constructed as a mean squared error minimiser, but an alternative derivation of the filter is also provided showing how the filter relates to maximum likelihood statistics. The filter is named after Rudolf E. Kálmán.

Kalman filtering has numerous technological applications. A common application is for guidance, navigation, and control of vehicles, particularly aircraft, spacecraft and ships positioned dynamically. Furthermore, Kalman filtering is much applied in time series analysis tasks such as signal processing and econometrics. Kalman filtering is also important for robotic motion planning and control, and can be used for trajectory optimization. Kalman filtering also works for modeling the central nervous system's control of movement. Due to the time delay between issuing motor commands and receiving sensory feedback, the use of Kalman filters provides a realistic model for making estimates of the current state of a motor system and issuing updated commands.

View the full Wikipedia page for Kalman filter
↑ Return to Menu

Joint probability distribution in the context of Regression coefficient

In statistics, linear regression is a model that estimates the relationship between a scalar response (dependent variable) and one or more explanatory variables (regressor or independent variable). A model with exactly one explanatory variable is a simple linear regression; a model with two or more explanatory variables is a multiple linear regression. This term is distinct from multivariate linear regression, which predicts multiple correlated dependent variables rather than a single dependent variable.

In linear regression, the relationships are modeled using linear predictor functions whose unknown model parameters are estimated from the data. Most commonly, the conditional mean of the response given the values of the explanatory variables (or predictors) is assumed to be an affine function of those values; less commonly, the conditional median or some other quantile is used. Like all forms of regression analysis, linear regression focuses on the conditional probability distribution of the response given the values of the predictors, rather than on the joint probability distribution of all of these variables, which is the domain of multivariate analysis.

View the full Wikipedia page for Regression coefficient
↑ Return to Menu

Joint probability distribution in the context of Generative model

In statistical classification, two main approaches are called the generative approach and the discriminative approach. These compute classifiers by different approaches, differing in the degree of statistical modelling. Terminology is inconsistent, but three major types can be distinguished:

  1. A generative model is a statistical model of the joint probability distribution on a given observable variable X and target variable Y; A generative model can be used to "generate" random instances (outcomes) of an observation x.
  2. A discriminative model is a model of the conditional probability of the target Y, given an observation x. It can be used to "discriminate" the value of the target variable Y, given an observation x.
  3. Classifiers computed without using a probability model are also referred to loosely as "discriminative".

The distinction between these last two classes is not consistently made; Jebara (2004) refers to these three classes as generative learning, conditional learning, and discriminative learning, but Ng & Jordan (2002) only distinguish two classes, calling them generative classifiers (joint distribution) and discriminative classifiers (conditional distribution or no distribution), not distinguishing between the latter two classes. Analogously, a classifier based on a generative model is a generative classifier, while a classifier based on a discriminative model is a discriminative classifier, though this term also refers to classifiers that are not based on a model.

View the full Wikipedia page for Generative model
↑ Return to Menu

Joint probability distribution in the context of Conditional probability distribution

In probability theory and statistics, the conditional probability distribution is a probability distribution that describes the probability of an outcome given the occurrence of a particular event. Given two jointly distributed random variables and , the conditional probability distribution of given is the probability distribution of when is known to be a particular value; in some cases the conditional probabilities may be expressed as functions containing the unspecified value of as a parameter. When both and are categorical variables, a conditional probability table is typically used to represent the conditional probability. The conditional distribution contrasts with the marginal distribution of a random variable, which is its distribution without reference to the value of the other variable.

If the conditional distribution of given is a continuous distribution, then its probability density function is known as the conditional density function. The properties of a conditional distribution, such as the moments, are often referred to by corresponding names such as the conditional mean and conditional variance.

View the full Wikipedia page for Conditional probability distribution
↑ Return to Menu