James Clerk Maxwell in the context of "Maxwell equations"

Play Trivia Questions online!

or

Skip to study material about James Clerk Maxwell in the context of "Maxwell equations"

Ad spacer

⭐ Core Definition: James Clerk Maxwell

James Clerk Maxwell FRS FRSE (13 June 1831 – 5 November 1879) was a Scottish physicist and mathematician who was responsible for the classical theory of electromagnetic radiation, which was the first theory to describe electricity, magnetism and light as different manifestations of the same phenomenon. Maxwell's equations for electromagnetism achieved the second great unification in physics, where the first one had been realised by Isaac Newton. Maxwell was also key in the creation of statistical mechanics.

With the publication of "A Dynamical Theory of the Electromagnetic Field" in 1865, Maxwell demonstrated that electric and magnetic fields travel through space as waves moving at the speed of light. He proposed that light is an undulation in the same medium that is the cause of electric and magnetic phenomena. The unification of light and electrical phenomena led to his prediction of the existence of radio waves, and the paper contained his final version of his equations, which he had been working on since 1856. As a result of his equations, and other contributions such as introducing an effective method to deal with network problems and linear conductors, he is regarded as a founder of the modern field of electrical engineering. In 1871, Maxwell became the first Cavendish Professor of Physics, serving until his death in 1879.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

James Clerk Maxwell in the context of 19th century in science

The 19th century in science saw the birth of science as a profession; the term scientist was coined in 1833 by William Whewell, which soon replaced the older term of (natural) philosopher.

Among the most influential ideas of the 19th century were those of Charles Darwin (alongside the independent research of Alfred Russel Wallace), who in 1859 published the book On the Origin of Species, which introduced the idea of evolution by natural selection. Another important landmark in medicine and biology were the successful efforts to prove the germ theory of disease. Following this, Louis Pasteur made the first vaccine against rabies, and also made many discoveries in the field of chemistry, including the asymmetry of crystals. In chemistry, Dmitri Mendeleev, following the atomic theory of John Dalton, created the first periodic table of elements. In physics, the experiments, theories and discoveries of Michael Faraday, Andre-Marie Ampere, James Clerk Maxwell, and their contemporaries led to the creation of electromagnetism as a new branch of science. Thermodynamics led to an understanding of heat and the notion of energy was defined.

↑ Return to Menu

James Clerk Maxwell in the context of Intermolecular force

An intermolecular force (IMF; also secondary force) is the force that mediates interaction between molecules, including the electromagnetic forces of attractionor repulsion which act between atoms and other types of neighbouring particles (e.g. atoms or ions). Intermolecular forces are weak relative to intramolecular forces – the forces which hold a molecule together. For example, the covalent bond, involving sharing electron pairs between atoms, is much stronger than the forces present between neighboring molecules. Both sets of forces are essential parts of force fields frequently used in molecular mechanics.

The first reference to the nature of microscopic forces is found in Alexis Clairaut's work Théorie de la figure de la Terre, published in Paris in 1743. Other scientists who have contributed to the investigation of microscopic forces include: Laplace, Gauss, Maxwell, Boltzmann and Pauling.

↑ Return to Menu

James Clerk Maxwell in the context of Additive color

Additive color or additive mixing is a property of a color model that predicts the appearance of colors made by coincident component lights, i.e. the perceived color can be predicted by summing the numeric representations of the component colors. Modern formulations of Grassmann's laws describe the additivity in the color perception of light mixtures in terms of algebraic equations. Additive color predicts perception and not any sort of change in the photons of light themselves. These predictions are only applicable in the limited scope of color matching experiments where viewers match small patches of uniform color isolated against a gray or black background.

Additive color models are applied in the design and testing of electronic displays that are used to render realistic images containing diverse sets of color using phosphors that emit light of a limited set of primary colors. Examination with a sufficiently powerful magnifying lens will reveal that each pixel in CRT, LCD, and most other types of color video displays is composed of red, green, and blue light-emitting phosphors which appear as a variety of single colors when viewed from a normal distance.

↑ Return to Menu

James Clerk Maxwell in the context of Color photography

Color photography (also spelled as colour photography in Commonwealth English) is photography that uses media capable of capturing and reproducing colors. By contrast, black-and-white or gray-monochrome photography records only a single channel of luminance (brightness) and uses media capable only of showing shades of gray.

In color photography, electronic sensors or light-sensitive chemicals record color information at the time of exposure. This is usually done by analyzing the spectrum of colors into three channels of information, one dominated by red, another by green and the third by blue, in imitation of the way the normal human eye senses color. The recorded information is then used to reproduce the original colors by mixing various proportions of red, green and blue light (RGB color, used by video displays, digital projectors and some historical photographic processes), or by using dyes or pigments to remove various proportions of the red, green and blue which are present in white light (CMY color, used for prints on paper and transparencies on film).

↑ Return to Menu

James Clerk Maxwell in the context of Unification of theories in physics

Unification of theories about observable fundamental phenomena of nature is one of the primary goals of physics. The two great unifications to date are Isaac Newton’s unification of gravity and astronomy, and James Clerk Maxwell’s unification of electromagnetism; the latter has been further unified with the concept of electroweak interaction. This process of "unifying" forces continues today, with the ultimate goal of finding a theory of everything.

↑ Return to Menu

James Clerk Maxwell in the context of Maxwell's equations

Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, electric and magnetic circuits. The equations provide a mathematical model for electric, optical, and radio technologies, such as power generation, electric motors, wireless communication, lenses, radar, etc. They describe how electric and magnetic fields are generated by charges, currents, and changes of the fields. The equations are named after the physicist and mathematician James Clerk Maxwell, who, in 1861 and 1862, published an early form of the equations that included the Lorentz force law. Maxwell first used the equations to propose that light is an electromagnetic phenomenon. The modern form of the equations in their most common formulation is credited to Oliver Heaviside.

Maxwell's equations may be combined to demonstrate how fluctuations in electromagnetic fields (waves) propagate at a constant speed in vacuum, c (299792458 m/s). Known as electromagnetic radiation, these waves occur at various wavelengths to produce a spectrum of radiation from radio waves to gamma rays.

↑ Return to Menu

James Clerk Maxwell in the context of Trinity College, Cambridge

Trinity College is a constituent college of the University of Cambridge. Founded in 1546 by King Henry VIII, Trinity is one of the largest Cambridge colleges, with the largest financial endowment of any college at Oxford or Cambridge. Trinity has some of the most distinctive architecture in Cambridge with its Great Court said to be the largest enclosed courtyard in Europe. Academically, Trinity performs exceptionally as measured by the Tompkins Table (the annual unofficial league table of Cambridge colleges), coming top from 2011 to 2017, and regaining the position in 2024.

Members of Trinity have been awarded 34 Nobel Prizes out of the 121 received by members of the University of Cambridge (more than any other Oxford or Cambridge college). Members of the college have received four Fields Medals, one Turing Award and one Abel Prize. Trinity alumni include Francis Bacon, six British prime ministers (the highest number of any Cambridge college), physicists Isaac Newton, James Clerk Maxwell, Ernest Rutherford and Niels Bohr, mathematicians Srinivasa Ramanujan and Charles Babbage, poets Lord Byron and Lord Tennyson, English jurist Edward Coke, writers Vladimir Nabokov and A. A. Milne, historians Lord Macaulay and G. M. Trevelyan, and philosophers Ludwig Wittgenstein and Bertrand Russell (who the college expelled before reaccepting). Two members of the British royal family have studied at Trinity and been awarded degrees: Prince William of Gloucester and Edinburgh, who gained an MA in 1790, and King Charles III, who was awarded a lower second class BA in 1970.

↑ Return to Menu

James Clerk Maxwell in the context of Thomas Young (scientist)

Thomas Young FRS (13 June 1773 – 10 May 1829) was a British polymath who made notable contributions to the fields of vision, light, solid mechanics, energy, physiology, language, musical harmony, and Egyptology. He was instrumental in the decipherment of Egyptian hieroglyphs, specifically the Rosetta Stone.

Young has been described as "The Last Man Who Knew Everything". His work influenced that of William Herschel, Hermann von Helmholtz, James Clerk Maxwell, and Albert Einstein. Young is credited with establishing Christiaan Huygens' wave theory of light, in contrast to the corpuscular theory of Isaac Newton. Young's work was subsequently supported by the work of Augustin-Jean Fresnel.

↑ Return to Menu