Invariant theory in the context of Linear group


Invariant theory in the context of Linear group

Invariant theory Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Invariant theory in the context of "Linear group"


⭐ Core Definition: Invariant theory

Invariant theory is a branch of abstract algebra dealing with actions of groups on algebraic varieties, such as vector spaces, from the point of view of their effect on functions. Classically, the theory dealt with the question of explicit description of polynomial functions that do not change (are invariant) under the transformations from a given linear group. For example, if we consider the action of the special linear group SLn on the space of n by n matrices by left multiplication, then the determinant is an invariant of this action because the determinant of A X equals the determinant of X, when A is in SLn.

↓ Menu
HINT:

In this Dossier

Invariant theory in the context of David Hilbert

David Hilbert (/ˈhɪlbərt/; German: [ˈdaːvɪt ˈhɪlbɐt]; 23 January 1862 – 14 February 1943) was a German mathematician and philosopher of mathematics and one of the most influential mathematicians of his time.

Hilbert discovered and developed a broad range of fundamental ideas including invariant theory, the calculus of variations, commutative algebra, algebraic number theory, the foundations of geometry, spectral theory of operators and its application to integral equations, mathematical physics, and the foundations of mathematics (particularly proof theory). He adopted and defended Georg Cantor's set theory and transfinite numbers. In 1900, he presented a collection of problems that set a course for mathematical research of the 20th century.

View the full Wikipedia page for David Hilbert
↑ Return to Menu

Invariant theory in the context of Hilbert's Nullstellensatz

In mathematics, Hilbert's Nullstellensatz (German for "theorem of zeros", or more literally, "zero-locus-theorem") is a theorem that establishes a fundamental relationship between geometry and algebra. This relationship is the basis of algebraic geometry. It relates algebraic sets to ideals in polynomial rings over algebraically closed fields. This relationship was discovered by David Hilbert, who proved the Nullstellensatz in his second major paper on invariant theory in 1893 (following his seminal 1890 paper in which he proved Hilbert's basis theorem).

View the full Wikipedia page for Hilbert's Nullstellensatz
↑ Return to Menu