Invariant (mathematics) in the context of Triangle


Invariant (mathematics) in the context of Triangle

Invariant (mathematics) Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Invariant (mathematics) in the context of "Triangle"


⭐ Core Definition: Invariant (mathematics)

In mathematics, an invariant is a property of a mathematical object (or a class of mathematical objects) which remains unchanged after operations or transformations of a certain type are applied to the objects. The particular class of objects and type of transformations are usually indicated by the context in which the term is used. For example, the area of a triangle is an invariant with respect to isometries of the Euclidean plane. The phrases "invariant under" and "invariant to" a transformation are both used. More generally, an invariant with respect to an equivalence relation is a property that is constant on each equivalence class.

Invariants are used in diverse areas of mathematics such as geometry, topology, algebra and discrete mathematics. Some important classes of transformations are defined by an invariant they leave unchanged. For example, conformal maps are defined as transformations of the plane that preserve angles. The discovery of invariants is an important step in the process of classifying mathematical objects.

↓ Menu
HINT:

In this Dossier

Invariant (mathematics) in the context of Symmetry

Symmetry (from Ancient Greek συμμετρία (summetría) 'agreement in dimensions, due proportion, arrangement') in everyday life refers to a sense of harmonious and beautiful proportion and balance. In mathematics, the term has a more precise definition and is usually used to refer to an object that is invariant under some transformations, such as translation, reflection, rotation, or scaling. Although these two meanings of the word can sometimes be told apart, they are intricately related, and hence are discussed together in this article.

Mathematical symmetry may be observed with respect to the passage of time; as a spatial relationship; through geometric transformations; through other kinds of functional transformations; and as an aspect of abstract objects, including theoretic models, language, and music.

View the full Wikipedia page for Symmetry
↑ Return to Menu

Invariant (mathematics) in the context of Congruence (geometry)

In geometry, two figures or objects are congruent if they have the same shape and size, or if one has the same shape and size as the mirror image of the other.

More formally, two sets of points are called congruent if, and only if, one can be transformed into the other by an isometry, i.e., a combination of rigid motions, namely a translation, a rotation, and a reflection. This means that either object can be repositioned and reflected (but not resized) so as to coincide precisely with the other object. Therefore, two distinct plane figures on a piece of paper are congruent if they can be cut out and then matched up completely. Turning the paper over is permitted.

View the full Wikipedia page for Congruence (geometry)
↑ Return to Menu

Invariant (mathematics) in the context of Symmetry group

In group theory, the symmetry group of a geometric object is the group of all transformations under which the object is invariant, endowed with the group operation of composition. Such a transformation is an invertible mapping of the ambient space which takes the object to itself, and which preserves all the relevant structure of the object. A frequent notation for the symmetry group of an object X is G = Sym(X).

For an object in a metric space, its symmetries form a subgroup of the isometry group of the ambient space. This article mainly considers symmetry groups in Euclidean geometry, but the concept may also be studied for more general types of geometric structure.

View the full Wikipedia page for Symmetry group
↑ Return to Menu

Invariant (mathematics) in the context of Invariant (physics)

In theoretical physics, an invariant is an observable of a physical system which remains unchanged under some transformation. Invariance, as a broader term, also applies to the no change of form of physical laws under a transformation, and is closer in scope to the mathematical definition. Invariants of a system are deeply tied to the symmetries imposed by its environment.

Invariance is an important concept in modern theoretical physics, and many theories are expressed in terms of their symmetries and invariants.

View the full Wikipedia page for Invariant (physics)
↑ Return to Menu

Invariant (mathematics) in the context of Algebraic topology

Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism, though usually most classify up to homotopy equivalence.

Although algebraic topology primarily uses algebra to study topological problems, using topology to solve algebraic problems is sometimes also possible. Algebraic topology, for example, allows for a convenient proof that any subgroup of a free group is again a free group.

View the full Wikipedia page for Algebraic topology
↑ Return to Menu

Invariant (mathematics) in the context of Invariant theory

Invariant theory is a branch of abstract algebra dealing with actions of groups on algebraic varieties, such as vector spaces, from the point of view of their effect on functions. Classically, the theory dealt with the question of explicit description of polynomial functions that do not change (are invariant) under the transformations from a given linear group. For example, if we consider the action of the special linear group SLn on the space of n by n matrices by left multiplication, then the determinant is an invariant of this action because the determinant of A X equals the determinant of X, when A is in SLn.

View the full Wikipedia page for Invariant theory
↑ Return to Menu

Invariant (mathematics) in the context of Homotopy

In topology, two continuous functions from one topological space to another are called homotopic (from Ancient Greek: ὁμός homós 'same, similar' and τόπος tópos 'place') if one can be "continuously deformed" into the other, such a deformation being called a homotopy (/həˈmɒtəp/ hə-MOT-ə-pee; /ˈhmˌtp/ HOH-moh-toh-pee) between the two functions. A notable use of homotopy is the definition of homotopy groups and cohomotopy groups, important invariants in algebraic topology.

In practice, there are technical difficulties in using homotopies with certain spaces. Algebraic topologists work with compactly generated spaces, CW complexes, or spectra.

View the full Wikipedia page for Homotopy
↑ Return to Menu

Invariant (mathematics) in the context of Topological property

In topology and related areas of mathematics, a topological property or topological invariant is a property of a topological space that is invariant under homeomorphisms. Alternatively, a topological property is a proper class of topological spaces which is closed under homeomorphisms. That is, a property of spaces is a topological property if whenever a space X possesses that property every space homeomorphic to X possesses that property. Informally, a topological property is a property of the space that can be expressed using open sets.

A common problem in topology is to decide whether two topological spaces are homeomorphic or not. To prove that two spaces are not homeomorphic, it is sufficient to find a topological property which is not shared by them.

View the full Wikipedia page for Topological property
↑ Return to Menu

Invariant (mathematics) in the context of Transformation geometry

In mathematics, transformation geometry (or transformational geometry) is the name of a mathematical and pedagogic take on the study of geometry by focusing on groups of geometric transformations, and properties that are invariant under them. It is opposed to the classical synthetic geometry approach of Euclidean geometry, that focuses on proving theorems.

For example, within transformation geometry, the properties of an isosceles triangle are deduced from the fact that it is mapped to itself by a reflection about a certain line. This contrasts with the classical proofs by the criteria for congruence of triangles.

View the full Wikipedia page for Transformation geometry
↑ Return to Menu

Invariant (mathematics) in the context of Lucas critique

The Lucas critique argues that it is naive to try to predict the effects of a change in economic policy entirely on the basis of relationships observed in historical data, especially highly aggregated historical data. More formally, it states that the decision rules of Keynesian models—such as the consumption function—cannot be considered as structural in the sense of being invariant with respect to changes in government policy variables. It was named after American economist Robert Lucas's work on macroeconomic policymaking.

The Lucas critique is significant in the history of economic thought as a representative of the paradigm shift that occurred in macroeconomic theory in the 1970s towards attempts at establishing micro-foundations.

View the full Wikipedia page for Lucas critique
↑ Return to Menu

Invariant (mathematics) in the context of Translational symmetry

In physics and mathematics, continuous translational symmetry is the invariance of a system of equations under any translation (without rotation). Discrete translational symmetry is invariance under discrete translation.

Analogously, an operator A on functions is said to be translationally invariant with respect to a translation operator if the result after applying A doesn't change if the argument function is translated.More precisely it must hold that

View the full Wikipedia page for Translational symmetry
↑ Return to Menu

Invariant (mathematics) in the context of Symmetry (geometry)

In geometry, an object has symmetry if there is an operation or transformation (such as translation, scaling, rotation or reflection) that maps the figure/object onto itself (i.e., the object has an invariance under the transform). Thus, a symmetry can be thought of as an immunity to change. For instance, a circle rotated about its center will have the same shape and size as the original circle, as all points before and after the transform would be indistinguishable. A circle is thus said to be symmetric under rotation or to have rotational symmetry. If the isometry is the reflection of a plane figure about a line, then the figure is said to have reflectional symmetry or line symmetry; it is also possible for a figure/object to have more than one line of symmetry.

The types of symmetries that are possible for a geometric object depend on the set of geometric transforms available, and on what object properties should remain unchanged after a transformation. Because the composition of two transforms is also a transform and every transform has, by definition, an inverse transform that undoes it, the set of transforms under which an object is symmetric form a mathematical group, the symmetry group of the object.

View the full Wikipedia page for Symmetry (geometry)
↑ Return to Menu

Invariant (mathematics) in the context of Theorema Egregium

Gauss's Theorema Egregium (Latin for "remarkable theorem") is a major result of differential geometry, proved by Carl Friedrich Gauss in 1827, that concerns the curvature of surfaces. The theorem says that Gaussian curvature can be determined entirely by measuring angles, distances and their rates of change on a surface, without reference to the particular manner in which the surface is embedded in the ambient 3-dimensional Euclidean space. In other words, the Gaussian curvature of a surface does not change if one bends the surface without stretching it. Thus the Gaussian curvature is an intrinsic invariant of a surface.

Gauss presented the theorem in this manner (translated from Latin):

View the full Wikipedia page for Theorema Egregium
↑ Return to Menu

Invariant (mathematics) in the context of Equivariant map

In mathematics, equivariance is a form of symmetry for functions from one space with symmetry to another (such as symmetric spaces). A function is said to be an equivariant map when its domain and codomain are acted on by the same symmetry group, and when the function commutes with the action of the group. That is, applying a symmetry transformation and then computing the function produces the same result as computing the function and then applying the transformation.

Equivariant maps generalize the concept of invariants, functions whose value is unchanged by a symmetry transformation of their argument. The value of an equivariant map is often (imprecisely) called an invariant.

View the full Wikipedia page for Equivariant map
↑ Return to Menu