Interval (mathematics) in the context of "Number line"

Play Trivia Questions online!

or

Skip to study material about Interval (mathematics) in the context of "Number line"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Interval (mathematics) in the context of Relativistic speed

Relativistic speed refers to speed at which relativistic effects become significant to the desired accuracy of measurement of the phenomenon being observed. Relativistic effects are those discrepancies between values calculated by models considering and not considering relativity. Related words are velocity, rapidity, and celerity which is proper velocity. Speed is a scalar, being the magnitude of the velocity vector which in relativity is the four-velocity and in three-dimension Euclidean space a three-velocity. Speed is empirically measured as average speed, although current devices in common use can estimate speed over very small intervals and closely approximate instantaneous speed. Non-relativistic discrepancies include cosine error which occurs in speed detection devices when only one scalar component of the three-velocity is measured and the Doppler effect which may affect observations of wavelength and frequency.

Relativistic effects are highly non-linear and for everyday purposes are insignificant because the Newtonian model closely approximates the relativity model. In special relativity the Lorentz factor is a measure of time dilation, length contraction and the relativistic mass increase of a moving object.

↑ Return to Menu

Interval (mathematics) in the context of Maximize

In mathematical analysis, the maximum and minimum of a function are, respectively, the greatest and least value taken by the function. Known generically as extrema, they may be defined either within a given range (the local or relative extrema) or on the entire domain (the global or absolute extrema) of a function. Pierre de Fermat was one of the first mathematicians to propose a general technique, adequality, for finding the maxima and minima of functions.

As defined in set theory, the maximum and minimum of a set are the greatest and least elements in the set, respectively. Unbounded infinite sets, such as the set of real numbers, have no minimum or maximum.

↑ Return to Menu

Interval (mathematics) in the context of Histogram

A histogram is a visual representation of the distribution of quantitative data. To construct a histogram, the first step is to "bin" (or "bucket") the range of values— divide the entire range of values into a series of intervals—and then count how many values fall into each interval. The bins are usually specified as consecutive, non-overlapping intervals of a variable. The bins (intervals) are adjacent and are typically (but not required to be) of equal size.

Histograms give a rough sense of the density of the underlying distribution of the data, and often for density estimation: estimating the probability density function of the underlying variable. The total area of a histogram used for probability density is always normalized to 1. If the length of the intervals on the x-axis are all 1, then a histogram is identical to a relative frequency plot.

↑ Return to Menu

Interval (mathematics) in the context of Continuous variable

In mathematics and statistics, a quantitative variable may be continuous or discrete. If it can take on two real values and all the values between them, the variable is continuous in that interval. If it can take on a value such that there is a non-infinitesimal gap on each side of it containing no values that the variable can take on, then it is discrete around that value. In some contexts, a variable can be discrete in some ranges of the number line and continuous in others. In statistics, continuous and discrete variables are distinct statistical data types which are described with different probability distributions.

↑ Return to Menu

Interval (mathematics) in the context of Continuous optimization

Continuous optimization is a branch of optimization in applied mathematics.

As opposed to discrete optimization, the variables used in the objective function are required to be continuous variables—that is, to be chosen from a set of real values between which there are no gaps (values from intervals of the real line). Because of this continuity assumption, continuous optimization allows the use of calculus techniques.

↑ Return to Menu

Interval (mathematics) in the context of Function of a real variable

In mathematical analysis, and applications in geometry, applied mathematics, engineering, and natural sciences, a function of a real variable is a function whose domain is the real numbers , or a subset of that contains an interval of positive length. Most real functions that are considered and studied are differentiable in some interval. The most widely considered such functions are the real functions, which are the real-valued functions of a real variable, that is, the functions of a real variable whose codomain is the set of real numbers.

Nevertheless, the codomain of a function of a real variable may be any set. However, it is often assumed to have a structure of -vector space over the reals. That is, the codomain may be a Euclidean space, a coordinate vector, the set of matrices of real numbers of a given size, or an -algebra, such as the complex numbers or the quaternions. The structure -vector space of the codomain induces a structure of -vector space on the functions. If the codomain has a structure of -algebra, the same is true for the functions.

↑ Return to Menu

Interval (mathematics) in the context of Frequency band

Spectral bands are regions of a given spectrum, having a specific range of wavelengths or frequencies. Most often, it refers to electromagnetic bands, regions of the electromagnetic spectrum. More generally, spectral bands may also be means in the spectra of other types of signals, e.g., noise spectrum.

A frequency band is an interval in the frequency domain, limited by a lower frequency and an upper frequency. For example, it may refer to a radio band, such as wireless communication standards set by the International Telecommunication Union.

↑ Return to Menu

Interval (mathematics) in the context of Open set

In mathematics, an open set is a generalization of an open interval in the real line.

In a metric space (a set with a distance defined between every two points), an open set is a set that, with every point P in it, contains all points of the metric space that are sufficiently near to P (that is, all points whose distance to P is less than some value depending on P).

↑ Return to Menu