Intersection (set theory) in the context of Field of sets


Intersection (set theory) in the context of Field of sets

Intersection (set theory) Study page number 1 of 2

Play TriviaQuestions Online!

or

Skip to study material about Intersection (set theory) in the context of "Field of sets"


⭐ Core Definition: Intersection (set theory)

In set theory, the intersection of two sets and denoted by is the set containing all elements of that also belong to or equivalently, all elements of that also belong to The notion of intersection as an algebraic operation with sets as operands has been generalized from geometry, where it is encountered in the case of geometric sets of points, such as individual points, lines (infinite uncountable sets of points), planes, etc.

↓ Menu
HINT:

In this Dossier

Intersection (set theory) in the context of Set theory

Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory – as a branch of mathematics – is mostly concerned with those that are relevant to mathematics as a whole.

The modern study of set theory was initiated by the German mathematicians Richard Dedekind and Georg Cantor in the 1870s. In particular, Georg Cantor is commonly considered the founder of set theory. The non-formalized systems investigated during this early stage go under the name of naive set theory. After the discovery of paradoxes within naive set theory (such as Russell's paradox, Cantor's paradox and the Burali-Forti paradox), various axiomatic systems were proposed in the early twentieth century, of which Zermelo–Fraenkel set theory (with or without the axiom of choice) is still the best-known and most studied.

View the full Wikipedia page for Set theory
↑ Return to Menu

Intersection (set theory) in the context of Algebraic integer

In algebraic number theory, an algebraic integer is a complex number that is integral over the integers. That is, an algebraic integer is a complex root of some monic polynomial (a polynomial whose leading coefficient is 1) whose coefficients are integers. The set of all algebraic integers A is closed under addition, subtraction and multiplication and therefore is a commutative subring of the complex numbers.

The ring of integers of a number field K, denoted by OK, is the intersection of K and A: it can also be characterized as the maximal order of the field K. Each algebraic integer belongs to the ring of integers of some number field. A number α is an algebraic integer if and only if the ring is finitely generated as an abelian group, which is to say, as a -module.

View the full Wikipedia page for Algebraic integer
↑ Return to Menu

Intersection (set theory) in the context of Cross-sectional area

In geometry and science, a cross section is the non-empty intersection of a solid body in three-dimensional space with a plane, or the analog in higher-dimensional spaces. Cutting an object into slices creates many parallel cross-sections. The boundary of a cross-section in three-dimensional space that is parallel to two of the axes, that is, parallel to the plane determined by these axes, is sometimes referred to as a contour line; for example, if a plane cuts through mountains of a raised-relief map parallel to the ground, the result is a contour line in two-dimensional space showing points on the surface of the mountains of equal elevation.

In technical drawing a cross-section, being a projection of an object onto a plane that intersects it, is a common tool used to depict the internal arrangement of a 3-dimensional object in two dimensions. It is traditionally crosshatched with the style of crosshatching often indicating the types of materials being used.

View the full Wikipedia page for Cross-sectional area
↑ Return to Menu

Intersection (set theory) in the context of Cybernetics

Cybernetics is the transdisciplinary study of circular causal processes such as feedback and recursion, where the effects of a system's actions (its outputs) return as inputs to that system, influencing subsequent action. It is concerned with general principles that are relevant across multiple contexts, including in engineering, ecological, economic, biological, cognitive and social systems and also in practical activities such as designing, learning, and managing. Cybernetics' transdisciplinary character has meant that it intersects with a number of other fields, leading to it having both a wide influence and diverse interpretations.

The field is named after an example of circular causal feedback—that of steering a ship (the ancient Greek κυβερνήτης (kybernḗtēs) refers to the person who steers a ship). In steering a ship, the position of the rudder is adjusted in continual response to the effect it is observed as having, forming a feedback loop through which a steady course can be maintained in a changing environment, responding to disturbances from cross winds and tide.

View the full Wikipedia page for Cybernetics
↑ Return to Menu

Intersection (set theory) in the context of Hyperplane

In geometry, a hyperplane is a generalization of a two-dimensional plane in three-dimensional space to mathematical spaces of arbitrary dimension. Like a plane in space, a hyperplane is a flat hypersurface, a subspace whose dimension is one less than that of the ambient space. Two lower-dimensional examples of hyperplanes are one-dimensional lines in a plane and zero-dimensional points on a line.

Most commonly, the ambient space is n-dimensional Euclidean space, in which case the hyperplanes are the (n − 1)-dimensional "flats", each of which separates the space into two half spaces. A reflection across a hyperplane is a kind of motion (geometric transformation preserving distance between points), and the group of all motions is generated by the reflections. A convex polytope is the intersection of half-spaces.

View the full Wikipedia page for Hyperplane
↑ Return to Menu

Intersection (set theory) in the context of Lattice (order)

A lattice is an abstract structure studied in the mathematical subdisciplines of order theory and abstract algebra. It consists of a partially ordered set in which every pair of elements has a unique supremum (also called a least upper bound or join) and a unique infimum (also called a greatest lower bound or meet). An example is given by the power set of a set, partially ordered by inclusion, for which the supremum is the union and the infimum is the intersection. Another example is given by the natural numbers, partially ordered by divisibility, for which the supremum is the least common multiple and the infimum is the greatest common divisor.

Lattices can also be characterized as algebraic structures satisfying certain axiomatic identities. Since the two definitions are equivalent, lattice theory draws on both order theory and universal algebra. Semilattices include lattices, which in turn include Heyting and Boolean algebras. These lattice-like structures all admit order-theoretic as well as algebraic descriptions.

View the full Wikipedia page for Lattice (order)
↑ Return to Menu

Intersection (set theory) in the context of Cross

The cross is a geometrical figure consisting of two intersecting lines or bars, usually perpendicular to each other. The lines usually run vertically and horizontally. A cross of oblique lines, in the shape of the Latin letter X, is also termed a saltire in heraldic terminology. Throughout centuries the cross in its various shapes and forms was a symbol of various beliefs.

The cross has been widely taken as an official symbol of the Christian faith exclusively from an early period in that religion's history to present. In pre-Christian times, it was used as a religious or cultural symbol throughout Europe, in west and south Asia (the latter, in the form of the original swastika); and in Ancient Egypt, where the Ankh was a hieroglyph that represented "life" and was used in the worship of the god Aten. It often appeared in conjunction with the female-genital circle or oval to signify the sacred marriage, as in the Egyptian amulet Nefer, which features the male cross and female orb, considered an amulet of blessedness and a charm of sexual harmony.

View the full Wikipedia page for Cross
↑ Return to Menu

Intersection (set theory) in the context of Discrete geometry

Discrete geometry and combinatorial geometry are branches of geometry that study combinatorial properties and constructive methods of discrete geometric objects. Most questions in discrete geometry involve finite or discrete sets of basic geometric objects, such as points, lines, planes, circles, spheres, polygons, and so forth. The subject focuses on the combinatorial properties of these objects, such as how they intersect one another, or how they may be arranged to cover a larger object.

Discrete geometry has a large overlap with convex geometry and computational geometry, and is closely related to subjects such as finite geometry, combinatorial optimization, digital geometry, discrete differential geometry, geometric graph theory, toric geometry, and combinatorial topology.

View the full Wikipedia page for Discrete geometry
↑ Return to Menu

Intersection (set theory) in the context of Set operation (Boolean)

In mathematics, the algebra of sets, not to be confused with the mathematical structure of an algebra of sets, defines the properties and laws of sets, the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.

Any set of sets closed under the set-theoretic operations forms a Boolean algebra with the join operator being union, the meet operator being intersection, the complement operator being set complement, the bottom being and the top being the universe set under consideration.

View the full Wikipedia page for Set operation (Boolean)
↑ Return to Menu

Intersection (set theory) in the context of Disjoint set

In set theory in mathematics and formal logic, two sets are said to be disjoint sets if they have no element in common. Equivalently, two disjoint sets are sets whose intersection is the empty set. For example, {1, 2, 3} and {4, 5, 6} are disjoint sets, while {1, 2, 3} and {3, 4, 5} are not disjoint. A collection of two or more sets is called disjoint if any two distinct sets of the collection are disjoint.

View the full Wikipedia page for Disjoint set
↑ Return to Menu