Integration (mathematics) in the context of Projection-valued measure


Integration (mathematics) in the context of Projection-valued measure

Integration (mathematics) Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Integration (mathematics) in the context of "Projection-valued measure"


⭐ Core Definition: Integration (mathematics)

In mathematics, an integral is the continuous analog of a sum, and is used to calculate areas, volumes, and their generalizations. Integration, the process of computing an integral, is one of the two fundamental operations of calculus, the other being differentiation. Integration was initially used to solve problems in mathematics and physics, such as finding the area under a curve, or determining displacement from velocity. Usage of integration expanded to a wide variety of scientific fields thereafter.

A definite integral computes the signed area of the region in the plane that is bounded by the graph of a given function between two points in the real line. Conventionally, areas above the horizontal axis of the plane are positive while areas below are negative. Integrals also refer to the concept of an antiderivative, a function whose derivative is the given function; in this case, they are also called indefinite integrals. The fundamental theorem of calculus relates definite integration to differentiation and provides a method to compute the definite integral of a function when its antiderivative is known; differentiation and integration are inverse operations.

↓ Menu
HINT:

In this Dossier

Integration (mathematics) in the context of Spectral measure

In mathematics, particularly in functional analysis, a projection-valued measure, or spectral measure, is a function defined on certain subsets of a fixed set and whose values are self-adjoint projections on a fixed Hilbert space. A projection-valued measure (PVM) is formally similar to a real-valued measure, except that its values are self-adjoint projections rather than real numbers. As in the case of ordinary measures, it is possible to integrate complex-valued functions with respect to a PVM; the result of such an integration is a linear operator on the given Hilbert space.

Projection-valued measures are used to express results in spectral theory, such as the important spectral theorem for self-adjoint operators, in which case the PVM is sometimes referred to as the spectral measure. The Borel functional calculus for self-adjoint operators is constructed using integrals with respect to PVMs. In quantum mechanics, PVMs are the mathematical description of projective measurements. They are generalized by positive operator valued measures (POVMs) in the same sense that a mixed state or density matrix generalizes the notion of a pure state.

View the full Wikipedia page for Spectral measure
↑ Return to Menu

Integration (mathematics) in the context of Probability mass function

In probability and statistics, a probability mass function (sometimes called probability function or frequency function) is a function that gives the probability that a discrete random variable is exactly equal to some value. Sometimes it is also known as the discrete probability density function. The probability mass function is often the primary means of defining a discrete probability distribution, and such functions exist for either scalar or multivariate random variables whose domain is discrete.

A probability mass function differs from a continuous probability density function (PDF) in that the latter is associated with continuous rather than discrete random variables. A continuous PDF must be integrated over an interval to yield a probability.

View the full Wikipedia page for Probability mass function
↑ Return to Menu