Integral operator in the context of Integral equation


Integral operator in the context of Integral equation

Integral operator Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Integral operator in the context of "Integral equation"


⭐ Core Definition: Integral operator

An integral operator is an operator that involves integration. Special instances are:

↓ Menu
HINT:

In this Dossier

Integral operator in the context of Integral equations

In mathematical analysis, integral equations are equations in which an unknown function appears under an integral sign. In mathematical notation, integral equations may thus be expressed as being of the form: where is an integral operator acting on u. Hence, integral equations may be viewed as the analog to differential equations where instead of the equation involving derivatives, the equation contains integrals. A direct comparison can be seen with the mathematical form of the general integral equation above with the general form of a differential equation which may be expressed as follows:where may be viewed as a differential operator of order i. Due to this close connection between differential and integral equations, one can often convert between the two. For example, one method of solving a boundary value problem is by converting the differential equation with its boundary conditions into an integral equation and solving the integral equation. In addition, because one can convert between the two, differential equations in physics such as Maxwell's equations often have an analog integral and differential form. See also, for example, Green's function and Fredholm theory.

View the full Wikipedia page for Integral equations
↑ Return to Menu

Integral operator in the context of Operator (mathematics)

In mathematics, an operator is generally a mapping or function that acts on elements of a space to produce elements of another space (possibly and sometimes required to be the same space). There is no general definition of an operator, but the term is often used in place of function when the domain is a set of functions or other structured objects. Also, the domain of an operator is often difficult to characterize explicitly (for example in the case of an integral operator), and may be extended so as to act on related objects (an operator that acts on functions may act also on differential equations whose solutions are functions that satisfy the equation). (see Operator (physics) for other examples)

The most basic operators are linear maps, which act on vector spaces. Linear operators refer to linear maps whose domain and range are the same space, for example from to .Such operators often preserve properties, such as continuity. For example, differentiation and indefinite integration are linear operators; operators that are built from them are called differential operators, integral operators or integro-differential operators.

View the full Wikipedia page for Operator (mathematics)
↑ Return to Menu