Instruction (computing) in the context of Microprocessors


Instruction (computing) in the context of Microprocessors

Instruction (computing) Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Instruction (computing) in the context of "Microprocessors"


⭐ Core Definition: Instruction (computing)

An instruction set architecture (ISA) is an abstract model that defines the programmable interface of the CPU of a computer; how software can control a computer. A device (i.e. CPU) that interprets instructions described by an ISA is an implementation of that ISA. Generally, the same ISA is used for a family of related CPU devices.

In general, an ISA defines the instructions, data types, registers, and the programming interface for managing main memory such as addressing modes, virtual memory, and memory consistency mechanisms. The ISA also includes the input/output model of the programmable interface.

↓ Menu
HINT:

In this Dossier

Instruction (computing) in the context of Central processing unit

A central processing unit (CPU), also called a central processor, main processor, or just processor, is the primary processor in a given computer. Its electronic circuitry executes instructions of a computer program, such as arithmetic, logic, controlling, and input/output (I/O) operations. This role contrasts with that of external components, such as main memory and I/O circuitry, and specialized coprocessors such as graphics processing units (GPUs).

The form, design, and implementation of CPUs have changed over time, but their fundamental operation remains almost unchanged. Principal components of a CPU include the arithmetic–logic unit (ALU) that performs arithmetic and logic operations, processor registers that supply operands to the ALU and store the results of ALU operations, and a control unit that orchestrates the fetching (from memory), decoding and execution (of instructions) by directing the coordinated operations of the ALU, registers, and other components. Modern CPUs devote a lot of semiconductor area to caches and instruction-level parallelism to increase performance and to CPU modes to support operating systems and virtualization.

View the full Wikipedia page for Central processing unit
↑ Return to Menu

Instruction (computing) in the context of Microprocessor

A microprocessor is a computer processor for which the data processing logic and control is included on a single integrated circuit (IC), or a small number of ICs. The microprocessor contains the arithmetic, logic, and control circuitry required to perform the functions of a computer's central processing unit (CPU). The IC is capable of interpreting and executing program instructions and performing arithmetic operations. The microprocessor is a multipurpose, clock-driven, register-based, digital integrated circuit that accepts binary data as input, processes it according to instructions stored in its memory, and provides results (also in binary form) as output. Microprocessors contain both combinational logic and sequential digital logic, and operate on numbers and symbols represented in the binary number system.

The integration of a whole CPU onto a single or a few integrated circuits using very-large-scale integration (VLSI) greatly reduced the cost of processing power. Integrated circuit processors are produced in large numbers by highly automated metal–oxide–semiconductor (MOS) fabrication processes, resulting in a relatively low unit price. Single-chip processors increase reliability because there are fewer electrical connections that can fail. As microprocessor designs improve, the cost of manufacturing a chip (with smaller components built on a semiconductor chip the same size) generally stays the same, according to Rock's law.

View the full Wikipedia page for Microprocessor
↑ Return to Menu