Inert gas in the context of "Oganesson"

Play Trivia Questions online!

or

Skip to study material about Inert gas in the context of "Oganesson"

Ad spacer

⭐ Core Definition: Inert gas

An inert gas is a gas that does not readily undergo chemical reactions with other chemical substances and therefore does not readily form chemical compounds. Though inert gases have a variety of applications, they are generally used to prevent unwanted chemical reactions with the oxygen (oxidation) and moisture (hydrolysis) in the air from degrading a sample. Generally, nitrogen, carbon dioxide, and all noble gases except oganesson (helium, neon, argon, krypton, xenon, and radon) are considered inert gases. The term inert gas is context-dependent because several of the inert gases, including nitrogen and carbon dioxide, can be made to react under certain conditions.

Purified argon gas is the most commonly used inert gas due to its high natural abundance (78.3% N2, 1% Ar in air) and low relative cost.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Inert gas in the context of Incandescent light bulb

An incandescent light bulb, also known as an incandescent lamp or incandescent light globe, is an electric light that produces illumination by Joule heating a filament until it glows. The filament is enclosed in a glass bulb that is either evacuated or filled with inert gas to protect the filament from oxidation. Electric current is supplied to the filament by terminals or wires embedded in the glass. A bulb socket provides mechanical support and electrical connections.

Incandescent bulbs are manufactured in a wide range of sizes, light output, and voltage ratings, from 1.5 volts to about 300 volts. They require no external regulating equipment, have low manufacturing costs, and work equally well on either alternating current or direct current. As a result, the incandescent bulb became widely used in household and commercial lighting, for portable lighting such as table lamps, car headlamps, and flashlights, and for decorative and advertising lighting.

↑ Return to Menu

Inert gas in the context of Atmosphere

An atmosphere is a layer of gases that envelop an astronomical object, held in place by the gravity of the object. The name originates from Ancient Greek ἀτμός (atmós) 'vapour, steam' and σφαῖρα (sphaîra) 'sphere'. An object acquires most of its atmosphere during its primordial epoch, either by accretion of matter or by outgassing of volatiles. The chemical interaction of the atmosphere with the solid surface can change its fundamental composition, as can photochemical interaction with the Sun. A planet retains an atmosphere for longer durations when the gravity is high and the temperature is low. The solar wind works to strip away a planet's outer atmosphere, although this process is slowed by a magnetosphere. The further a body is from the Sun, the lower the rate of atmospheric stripping.

Aside from Mercury, all Solar System planets have substantial atmospheres, as does the dwarf planet Pluto and the moon Titan. The high gravity and low temperature of Jupiter and the other gas giant planets allow them to retain massive atmospheres of mostly hydrogen and helium. Lower mass terrestrial planets orbit closer to the Sun, and so mainly retain higher density atmospheres made of carbon, nitrogen, and oxygen, with trace amounts of inert gas. Atmospheres have been detected around exoplanets such as HD 209458 b and Kepler-7b.

↑ Return to Menu

Inert gas in the context of Chemical

A chemical substance is a unique form of matter with constant chemical composition and characteristic properties. Chemical substances may take the form of a single element or chemical compounds. If two or more chemical substances can be combined without reacting, they may form a chemical mixture. If a mixture is separated to isolate one chemical substance to a desired degree, the resulting substance is said to be chemically pure.

Chemical substances can exist in several different physical states or phases (e.g. solids, liquids, gases, or plasma) without changing their chemical composition. Substances transition between these phases of matter in response to changes in temperature or pressure. Some chemical substances can be combined or converted into new substances by means of chemical reactions. Chemicals that do not possess this ability are said to be inert.

↑ Return to Menu

Inert gas in the context of Helium

Helium (from Greek: ἥλιος, romanizedhelios, lit.'sun') is a chemical element; it has symbol He and atomic number 2. It is a colorless, odorless, non-toxic, inert, monatomic gas and the first in the noble gas group in the periodic table. Its boiling point is the lowest among all the elements, and it does not have a melting point at standard pressures. It is the second-lightest and second-most abundant element in the observable universe, after hydrogen. It is present at about 24% of the total elemental mass, which is more than 12 times the mass of all the heavier elements combined. Its abundance is similar to this in both the Sun and Jupiter, because of the very high nuclear binding energy (per nucleon) of helium-4 with respect to the next three elements after helium. This helium-4 binding energy also accounts for why it is a product of both nuclear fusion and radioactive decay. The most common isotope of helium in the universe is helium-4, the vast majority of which was formed during the Big Bang. Large amounts of new helium are created by nuclear fusion of hydrogen in stars.

Helium was first detected as an unknown, yellow spectral line signature in sunlight during a solar eclipse in 1868 by Georges Rayet, Captain C. T. Haig, Norman R. Pogson, and Lieutenant John Herschel, and was subsequently confirmed by French astronomer Jules Janssen. Janssen is often jointly credited with detecting the element, along with Norman Lockyer. Janssen recorded the helium spectral line during the solar eclipse of 1868, while Lockyer observed it from Britain. However, only Lockyer proposed that the line was due to a new element, which he named after the Sun. The formal discovery of the element was made in 1895 by chemists Sir William Ramsay, Per Teodor Cleve, and Nils Abraham Langlet, who found helium emanating from the uranium ore cleveite, which is now not regarded as a separate mineral species, but as a variety of uraninite. In 1903, large reserves of helium were found in natural gas fields in parts of the United States, by far the largest supplier of the gas today.

↑ Return to Menu

Inert gas in the context of Neon

Neon is a chemical element; it has symbol Ne and atomic number 10. It is the second noble gas in the periodic table. Neon is a colorless, odorless, inert monatomic gas under standard conditions, with approximately two-thirds the density of air.

Neon was discovered in 1898 alongside krypton and xenon, identified as one of the three remaining rare inert elements in dry air after the removal of nitrogen, oxygen, argon, and carbon dioxide. Its discovery was marked by the distinctive bright red emission spectrum it exhibited, leading to its immediate recognition as a new element. The name neon originates from the Greek word νέον, a neuter singular form of νέος (neos), meaning 'new'. Neon is a chemically inert gas; although neon compounds do exist, they are primarily ionic molecules or fragile molecules held together by van der Waals forces.

↑ Return to Menu

Inert gas in the context of Asphyxiant gas

An asphyxiant gas, also known as a simple asphyxiant, is a nontoxic or minimally toxic gas which reduces or displaces the normal oxygen concentration in breathing air. Breathing of oxygen-depleted air can lead to death by asphyxiation (suffocation). Because asphyxiant gases are relatively inert and odorless, their presence in high concentration may not be noticed, except in the case of carbon dioxide (hypercapnia).

Toxic gases, by contrast, cause death by other mechanisms, such as competing with oxygen on the cellular level (e.g. carbon monoxide) or directly damaging the respiratory system (e.g. phosgene). Far smaller quantities of these are deadly.

↑ Return to Menu

Inert gas in the context of Chemicals

In chemistry, substance is a unique form of matter with constant chemical composition and characteristic properties. Chemical substances may take the form of a single element or chemical compounds. If two or more chemical substances can be combined without reacting, they may form a chemical mixture. If a mixture is separated to isolate one chemical substance to a desired degree, the resulting substance is said to be chemically pure.

Chemical substances can exist in several different physical states or phases (e.g. solids, liquids, gases, or plasma) without changing their chemical composition. Substances transition between these phases of matter in response to changes in temperature or pressure. Some chemical substances can be combined or converted into new substances by means of chemical reactions. Chemicals that do not possess this ability are said to be inert.

↑ Return to Menu