Indirect fire is shooting a projectile without relying on a direct line of sight between the gun and its target, in contrast to the case of direct fire. Aiming of indirect fire is instead performed by predicting a parabolic ballistic trajectory via calculation of the azimuth and inclination, and may include calibrating the aim by observer feedback about the actual point of impact of the preceding shot and thus readjusting to new firing angles for subsequent shots.
Indirect fire is the principal method of long-range artillery fire support, both from land and naval platforms. Due to the projectile's longer flight time (which exposes it more to deflectional factors such as drag and crosswind), curved trajectory, and the far and often obstacled "beyond-visual-range" nature of the targets, indirect fires are inherently harder to aim accurately than direct fires, resulting in a more unpredictable external ballistics and thus a much more scattered shot grouping. This, coupled with the significant blast distance of the explosive ordnance and their shrapnels, translates to a much higher risk of collateral damages and friendly fires, especially when firing danger-close.