Indian mathematics in the context of "0"

Play Trivia Questions online!

or

Skip to study material about Indian mathematics in the context of "0"

Ad spacer

⭐ Core Definition: Indian mathematics

Indian mathematics emerged in the Indian subcontinent from 1200 BCE until the end of the 18th century. In the classical period of Indian mathematics (400 CE to 1200 CE), important contributions were made by scholars like Aryabhata, Brahmagupta, Bhaskara II, Varāhamihira, and Madhava. The decimal number system in use today was first recorded in Indian mathematics. Indian mathematicians made early contributions to the study of the concept of zero as a number, negative numbers, arithmetic, and algebra. In addition, trigonometrywas further advanced in India, and, in particular, the modern definitions of sine and cosine were developed there. These mathematical concepts were transmitted to the Middle East, China, and Europe and led to further developments that now form the foundations of many areas of mathematics.

Ancient and medieval Indian mathematical works, all composed in Sanskrit, usually consisted of a section of sutras in which a set of rules or problems were stated with great economy in verse in order to aid memorization by a student. This was followed by a second section consisting of a prose commentary (sometimes multiple commentaries by different scholars) that explained the problem in more detail and provided justification for the solution. In the prose section, the form (and therefore its memorization) was not considered so important as the ideas involved. All mathematical works were orally transmitted until approximately 500 BCE; thereafter, they were transmitted both orally and in manuscript form. The oldest extant mathematical document produced on the Indian subcontinent is the birch bark Bakhshali Manuscript, discovered in 1881 in the village of Bakhshali, near Peshawar (modern day Pakistan) and is likely from the 7th century CE.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Indian mathematics in the context of Mathematics in the medieval Islamic world

Mathematics during the Golden Age of Islam, especially during the 9th and 10th centuries, was built upon syntheses of Greek mathematics (Euclid, Archimedes, Apollonius) and Indian mathematics (Aryabhata, Brahmagupta). Important developments of the period include extension of the place-value system to include decimal fractions, the systematised study of algebra and advances in geometry and trigonometry.

The medieval Islamic world underwent significant developments in mathematics. Muhammad ibn Musa al-Khwārizmī played a key role in this transformation, introducing algebra as a distinct field in the 9th century. Al-Khwārizmī's approach, departing from earlier arithmetical traditions, laid the groundwork for the arithmetization of algebra, influencing mathematical thought for an extended period. Successors like Al-Karaji expanded on his work, contributing to advancements in various mathematical domains. The practicality and broad applicability of these mathematical methods facilitated the dissemination of Arabic mathematics to the West, contributing substantially to the evolution of Western mathematics.

↑ Return to Menu

Indian mathematics in the context of Rigveda

The Rigveda or Rig Veda (Sanskrit: ऋग्वेद, IAST: ṛgveda, from ऋच्, "praise" and वेद, "knowledge") is an ancient Indian collection of Vedic Sanskrit hymns (sūktas). It is one of the four sacred canonical Hindu texts (śruti) known as the Vedas. Only one Shakha of the many survive today, namely the Śakalya Shakha. Much of the contents contained in the remaining Shakhas are now lost or are not available in the public forum.

The Rigveda is the oldest known Vedic Sanskrit text. Its early layers are among the oldest extant texts in any Indo-European language. Most scholars believe that the sounds and texts of the Rigveda have been orally transmitted with precision since the 2nd millennium BCE, through methods of memorisation of exceptional complexity, rigour and fidelity, though the dates are not confirmed and remain contentious until concrete evidence surfaces. Philological and linguistic evidence indicates that the bulk of the Rigveda Samhita was composed in the northwestern region of the Indian subcontinent (see Rigvedic rivers), most likely between c. 1500 and 1000 BCE, although a wider approximation of c. 1900–1200 BCE has also been given.

↑ Return to Menu

Indian mathematics in the context of Hindu–Arabic numeral system

The Hindu–Arabic numeral system (also known as the Indo-Arabic numeral system, Hindu numeral system, and Arabic numeral system) is a positional base-ten numeral system for representing integers; its extension to non-integers is the decimal numeral system, which is presently the most common numeral system.

The system was invented between the 1st and 4th centuries by Indian mathematicians. By the 9th century, the system was adopted by Arabic mathematicians who extended it to include fractions. It became more widely known through the writings in Arabic of the Persian mathematician Al-Khwārizmī (On the Calculation with Hindu Numerals, c. 825) and Arab mathematician Al-Kindi (On the Use of the Hindu Numerals, c. 830). The system had spread to medieval Europe by the High Middle Ages, notably following Fibonacci's 13th century Liber Abaci; until the evolution of the printing press in the 15th century, use of the system in Europe was mainly confined to Northern Italy.

↑ Return to Menu

Indian mathematics in the context of Zero

0 (zero) is a number representing an empty quantity. Adding (or subtracting) 0 to any number leaves that number unchanged; in mathematical terminology, 0 is the additive identity of the integers, rational numbers, real numbers, and complex numbers, as well as other algebraic structures. Multiplying any number by 0 results in 0, and consequently dividing by 0 is generally considered to be undefined in arithmetic.

As a numerical digit, 0 plays a crucial role in decimal notation: it indicates that the power of ten corresponding to the place containing a 0 does not contribute to the total. For example, "205" in decimal means two hundreds, no tens, and five ones. The same principle applies in place-value notations that uses a base other than ten, such as binary and hexadecimal. The modern use of 0 in this manner derives from Indian mathematics that was transmitted to Europe via medieval Islamic mathematicians and popularized by Fibonacci. It was independently used by the Maya.

↑ Return to Menu

Indian mathematics in the context of Aryabhata

Aryabhata ( ISO: Āryabhaṭa) or Aryabhata I (476–550 CE) was the first of the major mathematician-astronomers from the classical age of Indian mathematics and Indian astronomy. His works include the Āryabhaṭīya (which mentions that in 3600 Kali Yuga, 499 CE, he was 23 years old) and the Arya-siddhanta.

For his explicit mention of the relativity of motion, he also qualifies as a major early physicist.

↑ Return to Menu

Indian mathematics in the context of Brahmagupta

Brahmagupta (c. 598c. 668 CE) was an Indian mathematician and astronomer. He is the author of two early works on mathematics and astronomy: the Brāhmasphuṭasiddhānta (BSS, "correctly established doctrine of Brahma", dated 628), a theoretical treatise, and the Khandakhadyaka ("edible bite", dated 665), a more practical text.He was the first Indian scholar to describe gravity as an attractive force, and used the term "gurutvākarṣaṇam" in Sanskrit to describe it. He is also credited with the first clear description of the quadratic formula (the solution of the quadratic equation) in his main work, the Brāhma-sphuṭa-siddhānta.

↑ Return to Menu