Inconsistency in the context of Kurt Gödel


Inconsistency in the context of Kurt Gödel

Inconsistency Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Inconsistency in the context of "Kurt Gödel"


⭐ Core Definition: Inconsistency

In deductive logic, a consistent theory is one that does not lead to a logical contradiction. A theory is consistent if there is no formula such that both and its negation are elements of the set of consequences of . Let be a set of closed sentences (informally "axioms") and the set of closed sentences provable from under some (specified, possibly implicitly) formal deductive system. The set of axioms is consistent when there is no formula such that and . A trivial theory (i.e., one which proves every sentence in the language of the theory) is clearly inconsistent. Conversely, in an explosive formal system (e.g., classical or intuitionistic propositional or first-order logics) every inconsistent theory is trivial. Consistency of a theory is a syntactic notion, whose semantic counterpart is satisfiability. A theory is satisfiable if it has a model, i.e., there exists an interpretation under which all axioms in the theory are true. This is what consistent meant in traditional Aristotelian logic, although in contemporary mathematical logic the term satisfiable is used instead.

In a sound formal system, every satisfiable theory is consistent, but the converse does not hold. If there exists a deductive system for which these semantic and syntactic definitions are equivalent for any theory formulated in a particular deductive logic, the logic is called complete. The completeness of the propositional calculus was proved by Paul Bernays in 1918 and Emil Post in 1921, while the completeness of (first order) predicate calculus was proved by Kurt Gödel in 1930, and consistency proofs for arithmetics restricted with respect to the induction axiom schema were proved by Ackermann (1924), von Neumann (1927) and Herbrand (1931). Stronger logics, such as second-order logic, are not complete.

↓ Menu
HINT:

In this Dossier

Inconsistency in the context of Principle of explosion

In classical logic, intuitionistic logic, and similar logical systems, the principle of explosion is the law according to which any statement can be proven from a contradiction. That is, from a contradiction, any proposition (including its negation) can be inferred; this is known as deductive explosion.

The proof of this principle was first given by 12th-century French philosopher William of Soissons. Due to the principle of explosion, the existence of a contradiction (inconsistency) in a formal axiomatic system is disastrous; since any statement—true or not—can be proven, it trivializes the concepts of truth and falsity. Around the turn of the 20th century, the discovery of contradictions such as Russell's paradox at the foundations of mathematics thus threatened the entire structure of mathematics. Mathematicians such as Gottlob Frege, Ernst Zermelo, Abraham Fraenkel, and Thoralf Skolem put much effort into revising set theory to eliminate these contradictions, resulting in the modern Zermelo–Fraenkel set theory.

View the full Wikipedia page for Principle of explosion
↑ Return to Menu