Incompatible element in the context of "Fractional crystallization (geology)"

Play Trivia Questions online!

or

Skip to study material about Incompatible element in the context of "Fractional crystallization (geology)"




⭐ Core Definition: Incompatible element

In petrology and geochemistry, an incompatible element is one that is unsuitable in size and/or charge to the cation sites of the minerals in which it is included. It is defined by a partition coefficient between rock-forming minerals and melt being much smaller than 1.

During the fractional crystallization of magma and magma generation by the partial melting of the Earth's mantle and crust, elements that have difficulty in entering cation sites of the minerals are concentrated in the melt phase of the magma (liquid phase).

↓ Menu

In this Dossier

Incompatible element in the context of Zircon

Zircon (/ˈzɜːrkɒn, -kən/) is a mineral belonging to the group of nesosilicates and is a source of the metal zirconium. Its chemical name is zirconium(IV) silicate, and its corresponding chemical formula is ZrSiO4. An empirical formula showing some of the range of substitution in zircon is (Zr1–y, REEy)(SiO4)1–x(OH)4x–y. Zircon precipitates from silicate melts and has relatively high concentrations of high field strength incompatible elements. For example, hafnium is almost always present in quantities ranging from 1 to 4%. The crystal structure of zircon is tetragonal crystal system. The natural color of zircon varies between colorless, yellow-golden, red, brown, blue, and green.

The name derives from the Persian zargun, meaning "gold-hued". This word is changed into "jargoon", a term applied to light-colored zircons. The English word "zircon" is derived from Zirkon, which is the German adaptation of this word. Yellow, orange, and red zircon is also known as "hyacinth", from the flower hyacinthus, whose name is of Ancient Greek origin.

↑ Return to Menu