Immunological memory in the context of Antibody


Immunological memory in the context of Antibody

Immunological memory Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Immunological memory in the context of "Antibody"


⭐ Core Definition: Immunological memory

Immunological memory is the ability of the immune system to quickly and specifically recognize an antigen that the body has previously encountered and initiate a corresponding immune response. Generally, they are secondary, tertiary and other subsequent immune responses to the same antigen. The adaptive immune system and antigen-specific receptor generation (TCR, antibodies) are responsible for adaptive immune memory.

After the inflammatory immune response to danger-associated antigen, some of the antigen-specific T cells and B cells persist in the body and become long-living memory T and B cells. After the second encounter with the same antigen, they recognize the antigen and mount a faster and more robust response. Immunological memory is the basis of vaccination. Emerging resources show that even the innate immune system can initiate a more efficient immune response and pathogen elimination after the previous stimulation with a pathogen, respectively with PAMPs or DAMPs. Innate immune memory (also called trained immunity) is neither antigen-specific nor dependent on gene rearrangement, but the different response is caused by changes in epigenetic programming and shifts in cellular metabolism. Innate immune memory was observed in invertebrates as well as in vertebrates.

↓ Menu
HINT:

In this Dossier

Immunological memory in the context of Immune system

The immune system is a network of biological systems that protects an organism from diseases. It detects and responds to a wide variety of pathogens, such as viruses, bacteria, and parasites, as well as cancer cells and objects, such as wood splinters—distinguishing them from the organism's own healthy tissue. Many species have two major subsystems of the immune system. The innate immune system provides a preconfigured response to broad groups of situations and stimuli. The adaptive immune system provides a tailored response to each stimulus by learning to recognize molecules it has previously encountered. Both use molecules and cells to perform their functions.

Nearly all organisms have some kind of immune system. Bacteria have a rudimentary immune system in the form of enzymes that protect against viral infections. Other basic immune mechanisms evolved in ancient plants and animals and remain in their modern descendants. These mechanisms include phagocytosis, antimicrobial peptides called defensins, and the complement system. Jawed vertebrates, including humans, have even more sophisticated defense mechanisms, including the ability to adapt to recognize pathogens more efficiently. Adaptive (or acquired) immunity creates an immunological memory leading to an enhanced response to subsequent encounters with that same pathogen. This process of acquired immunity is the basis of vaccination.

View the full Wikipedia page for Immune system
↑ Return to Menu

Immunological memory in the context of Immunization

Immunization, or immunisation, is the process by which an individual's immune system becomes fortified against an infectious agent (known as the immunogen). When this system is exposed to molecules that are foreign to the body, called non-self, it will orchestrate an immune response, and it will also develop the ability to quickly respond to a subsequent encounter because of immunological memory. This is a function of the adaptive immune system. Therefore, by exposing a human, or an animal, to an immunogen in a controlled way, its body can learn to protect itself: this is called active immunization. The most important elements of the immune system that are improved by immunization are the T cells, B cells, and the antibodies B cells produce. Memory B cells and memory T cells are responsible for a swift response to a second encounter with a foreign molecule. Passive immunization is direct introduction of these elements into the body, instead of production of these elements by the body itself.

Immunization happens in various ways, both in the wild and as done by human efforts in health care. Natural immunity is gained by those organisms whose immune systems succeed in fighting off a previous infection, if the relevant pathogen is one for which immunization is even possible. Natural immunity can have degrees of effectiveness (partial rather than absolute) and may fade over time (within months, years, or decades, depending on the pathogen). In health care, the main technique of artificial induction of immunity is vaccination, which is a major form of prevention of disease, whether by prevention of infection (pathogen fails to mount sufficient reproduction in the host), prevention of severe disease (infection still happens but is not severe), or both. Vaccination against vaccine-preventable diseases is a major relief of disease burden even though it usually cannot eradicate a disease. Vaccines against microorganisms that cause diseases can prepare the body's immune system, thus helping to fight or prevent an infection. The fact that mutations can cause cancer cells to produce proteins or other molecules that are known to the body forms the theoretical basis for therapeutic cancer vaccines. Other molecules can be used for immunization as well, for example in experimental vaccines against nicotine (NicVAX) or the hormone ghrelin in experiments to create an obesity vaccine.

View the full Wikipedia page for Immunization
↑ Return to Menu

Immunological memory in the context of Trained immunity

Trained immunity is a long-term functional modification of chromatin in cells of the innate immune system which leads to an altered response to a second unrelated challenge. For example, the BCG vaccine leads to a reduction in childhood mortality caused by unrelated infectious agents. The term "innate immune memory" is sometimes used as a synonym for the term trained immunity which was first coined by Mihai Netea in 2011. The term "trained immunity" is relatively new – immunological memory has previously been considered only as a part of adaptive immunity – and refers only to changes in innate immune memory of vertebrates. This type of immunity is thought to be largely mediated by epigenetic modifications. The changes to the innate immune response may last up to several months, in contrast to the classical immunological memory (which may last up to a lifetime), and is usually unspecific because there is no production of specific antibodies/receptors. Trained immunity has been suggested to possess a transgenerational effect, for example the children of mothers who had also received vaccination against BCG had a lower mortality rate than children of unvaccinated mothers. The BRACE trial is currently assessing if BCG vaccination can reduce the impact of COVID-19 in healthcare workers. Other vaccines are also thought to induce immune training such as the DTPw vaccine.

View the full Wikipedia page for Trained immunity
↑ Return to Menu