Ichthyoplankton in the context of "Yolk sac"

Play Trivia Questions online!

or

Skip to study material about Ichthyoplankton in the context of "Yolk sac"

Ad spacer

⭐ Core Definition: Ichthyoplankton

Ichthyoplankton (from Greek: ἰχθύς, ikhthus, "fish"; and πλαγκτός, planktos, "drifter") are the eggs and larvae of fish. They are mostly found in the sunlit zone of the water column, less than 200 metres deep, which is sometimes called the epipelagic or photic zone. Ichthyoplankton are planktonic, meaning they cannot swim effectively under their own power, but must drift with the ocean currents. Fish eggs cannot swim at all, and are unambiguously planktonic. Early stage larvae swim poorly, but later stage larvae swim better and cease to be planktonic as they grow into juveniles. Fish larvae are part of the zooplankton that eat smaller plankton, while fish eggs carry their own food supply. Both eggs and larvae are themselves eaten by larger animals.

Fish can produce high numbers of eggs which are often released into the open water column. Fish eggs typically have a diameter of about 1 millimetre (0.039 in). The newly hatched young of oviparous fish are called larvae. They are usually poorly formed, carry a large yolk sac (for nourishment) and are very different in appearance from juvenile and adult specimens. The larval period in oviparous fish is relatively short (usually only several weeks), and larvae rapidly grow and change appearance and structure (a process termed metamorphosis) to become juveniles. During this transition larvae must switch from their yolk sac to feeding on zooplankton prey, a process which depends on typically inadequate zooplankton density, starving many larvae.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Ichthyoplankton in the context of Nekton

Nekton or necton (from the Ancient Greek: νηκτόν, romanizednekton, lit.'to swim') is any aquatic organism that can actively and persistently propel itself through a water column (i.e. swim) without touching the bottom. Nekton generally have powerful tails and appendages (e.g. fins, pleopods, flippers or jets) that make them strong enough swimmers to counter ocean currents, and have mechanisms for sufficient lift and/or buoyancy to prevent sinking. Examples of extant nekton include most fish (especially pelagic fish like tuna and sharks), marine mammals (cetaceans, sirenia and pinnipeds) and reptiles (specifically sea turtles), penguins, coleoid cephalopods (squids and cuttlefish) and several species of decapod crustaceans (specifically prawns, shrimp and krill).

The term was proposed by German biologist Ernst Haeckel to differentiate between the active swimmers in a body of water, and the plankton that are passively carried along by the current. As a guideline, nektonic organisms have a high Reynolds number (greater than 1000) and planktonic organisms a low one (less than 10). Some organisms begin their life cycle as planktonic eggs and larvae, and transition to nektonic juveniles and adults later in life. This may make distinction difficult when attempting to classify certain plankton-to-nekton species as one or the other. For this reason, some biologists avoid using this term.

↑ Return to Menu