Hypervalent molecules in the context of Triiodide


Hypervalent molecules in the context of Triiodide

Hypervalent molecules Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Hypervalent molecules in the context of "Triiodide"


⭐ Core Definition: Hypervalent molecules

In chemistry, a hypervalent molecule (the phenomenon is sometimes colloquially known as expanded octet) is a molecule that contains one or more main group elements apparently bearing more than eight electrons in their valence shells. Phosphorus pentachloride (PCl5), sulfur hexafluoride (SF6), chlorine trifluoride (ClF3), the chlorite (ClO2) ion in chlorous acid and the triiodide (I3) ion are examples of hypervalent molecules.

↓ Menu
HINT:

In this Dossier

Hypervalent molecules in the context of Three-center four-electron bond

The 3-center 4-electron (3c–4e) bond is a model used to explain bonding in certain hypervalent molecules such as tetratomic and hexatomic interhalogen compounds, sulfur tetrafluoride, the xenon fluorides, and the bifluoride ion. It is also known as the Pimentel–Rundle three-center model after the work published by George C. Pimentel in 1951, which built on concepts developed earlier by Robert E. Rundle for electron-deficient bonding. An extended version of this model is used to describe the whole class of hypervalent molecules such as phosphorus pentafluoride and sulfur hexafluoride as well as multi-center π-bonding such as ozone and sulfur trioxide.

There are also molecules such as diborane (B2H6) and dialane (Al2H6) which have three-center two-electron (3c–2e) bonds.

View the full Wikipedia page for Three-center four-electron bond
↑ Return to Menu