Hyperboloid in the context of "Ritchey–Chrétien telescope"

Play Trivia Questions online!

or

Skip to study material about Hyperboloid in the context of "Ritchey–Chrétien telescope"




⭐ Core Definition: Hyperboloid

In geometry, a hyperboloid of revolution, sometimes called a circular hyperboloid, is the surface generated by rotating a hyperbola around one of its principal axes. A hyperboloid is the surface obtained from a hyperboloid of revolution by deforming it by means of directional scalings, or more generally, of an affine transformation.

A hyperboloid is a quadric surface, that is, a surface defined as the zero set of a polynomial of degree two in three variables. Among quadric surfaces, a hyperboloid is characterized by not being a cone or a cylinder, having a center of symmetry, and intersecting many planes into hyperbolas. A hyperboloid has three pairwise perpendicular axes of symmetry, and three pairwise perpendicular planes of symmetry.

↓ Menu

In this Dossier

Hyperboloid in the context of Explosive lens

An explosive lens—as used, for example, in nuclear weapons—is a highly specialized shaped charge. In general, it is a device composed of several explosive charges. These charges are arranged and formed with the intent to control the shape of the detonation wave passing through them. The explosive lens is conceptually similar to an optical lens, which focuses light waves. The charges that make up the explosive lens are chosen to have different rates of detonation. In order to convert a spherically expanding wavefront into a spherically converging one using only a single boundary between the constituent explosives, the boundary shape must be a paraboloid; similarly, to convert a spherically diverging front into a flat one, the boundary shape must be a hyperboloid, and so on. Several boundaries can be used to reduce aberrations (deviations from intended shape) of the final wavefront.

↑ Return to Menu

Hyperboloid in the context of Solid figure

Solid geometry or stereometry is the geometry of three-dimensional Euclidean space (3D space).A solid figure is the region of 3D space bounded by a two-dimensional closed surface; for example, a solid ball consists of a sphere and its interior.

Solid geometry deals with the measurements of volumes of various solids, including pyramids, prisms, cubes (and other polyhedrons), cylinders, cones (including truncated) and other solids of revolution.

↑ Return to Menu

Hyperboloid in the context of Algebraic surface

In mathematics, an algebraic surface is an algebraic variety of dimension two. Thus, an algebraic surface is a solution of a set of polynomial equations, in which there are two independent directions at every point. An example of an algebraic surface is the sphere, which is determined by the single polynomial equation Studying the intrinsic geometry of algebraic surfaces is a central topic in algebraic geometry. The theory is much more complicated than for algebraic curves (one-dimensional cases), and was developed substantially by the Italian school of algebraic geometry in the late 19th and early 20th centuries.It remains an active field of research.

In the simplest cases, algebraic surfaces are studied as algebraic varieties over the complex numbers. For example, the familiar sphere (for real ), becomes a complex (affine) quadric surface, which simultaneously incorporates the sphere and hyperboloids of one and two sheets, and this allows some complications (such as the topology: whether the surface is connected, or simply connected) to be deferred somewhat. Higher degree surfaces include, for example, the Kummer surface. The classification of algebraic surfaces is much more intricate than the classification of algebraic curves, which have dimension one, and is already quite complicated.

↑ Return to Menu

Hyperboloid in the context of Quadric surface

In mathematics, a quadric or quadric surface is a generalization of conic sections (ellipses, parabolas, and hyperbolas). In three-dimensional space, quadrics include ellipsoids, paraboloids, and hyperboloids.

More generally, a quadric hypersurface (of dimension D) embedded in a higher dimensional space (of dimension D + 1) is defined as the zero set of an irreducible polynomial of degree two in D + 1 variables; for example, D=1 is the case of conic sections (plane curves). When the defining polynomial is not absolutely irreducible, the zero set is generally not considered a quadric, although it is often called a degenerate quadric or a reducible quadric.

↑ Return to Menu

Hyperboloid in the context of Ještěd Tower

Ještěd Tower (Czech: Hotel a televizní vysílač na Ještědu) is a television transmitter on top of Mount Ještěd near Liberec in the Czech Republic. Measuring 94 m (308 ft), it is made of reinforced concrete shaped in a "hyperboloid" form. The tower was designed by architect Karel Hubáček, who was assisted by Zdeněk Patrman, involved in building statics, and by Otakar Binar, who designed the interior furnishing. It took the team three years to finalize the structure design (1963–1966). The construction itself took seven years to finish (1966–1973).

The hyperboloid shape was chosen since it naturally extends the silhouette of the hill and, moreover, resists the extreme climate conditions on the summit of Mount Ještěd. The design combines the operation of a mountaintop hotel and a television transmitter. The hotel and restaurant are located in the lowest sections of the tower. Before construction of the hotel, two huts stood near the mountain summit: one was built in the middle of the 19th century, and the other was added in the early 20th century. Both buildings had a wooden structure, and both burned to the ground in the 1960s.

↑ Return to Menu

Hyperboloid in the context of Gaussian curvature

In differential geometry, the Gaussian curvature or Gauss curvature Κ of a smooth surface in three-dimensional space at a point is the product of the principal curvatures, κ1 and κ2, at the given point:For example, a sphere of radius r has Gaussian curvature 1/r everywhere, and a flat plane and a cylinder have Gaussian curvature zero everywhere. The Gaussian curvature can also be negative, as in the case of a hyperboloid or the inside of a torus.

Gaussian curvature is an intrinsic measure of curvature, meaning that it could in principle be measured by a 2-dimensional being living entirely within the surface, because it depends only on distances that are measured “within” or along the surface, not on the way it is isometrically embedded in Euclidean space. This is the content of the Theorema Egregium.

↑ Return to Menu

Hyperboloid in the context of Curvature of Riemannian manifolds

In mathematics, specifically differential geometry, the infinitesimal geometry of Riemannian manifolds with dimension greater than 2 is too complicated to be described by a single number at a given point. Riemann introduced an abstract and rigorous way to define curvature for these manifolds, now known as the Riemann curvature tensor. Similar notions have found applications everywhere in differential geometry of surfaces and other objects.The curvature of a pseudo-Riemannian manifold can be expressed in the same way with only slight modifications.

↑ Return to Menu