Hydroxyl in the context of "Cellulose triacetate"

Play Trivia Questions online!

or

Skip to study material about Hydroxyl in the context of "Cellulose triacetate"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Hydroxyl in the context of Syrup

In cooking, syrup (less commonly sirup; from Latin: sirupus, from earlier Arabic: شراب; sharāb, beverage, wine) is a thick, viscous, liquid condiment consisting primarily of a solution of sugar in water. It typically contains a large amount of dissolved sugars but shows little tendency to deposit crystals. In its concentrated form, its consistency is similar to that of molasses. The viscosity arises from the multiple hydrogen bonds between the dissolved sugar, which has many hydroxyl (OH) groups.

↑ Return to Menu

Hydroxyl in the context of Serpentine group

Serpentine subgroup (part of the kaolinite-serpentine group in the category of phyllosilicates) are greenish, brownish, or spotted minerals commonly found in serpentinite. They are used as a source of magnesium and asbestos, and as decorative stone. The name comes from the greenish color and smooth or scaly appearance from the Latin serpentinus, meaning "snake-like".

Serpentine subgroup is a set of common rock-forming hydrous magnesium iron phyllosilicate ((Mg,Fe)
3
Si
2
O
5
(OH)
4
) minerals, resulting from the metamorphism of the minerals that are contained in mafic to ultramafic rocks. They may contain minor amounts of other elements including chromium, manganese, cobalt or nickel. In mineralogy and gemology, serpentine may refer to any of the 20 varieties belonging to the serpentine subgroup. Owing to admixture, these varieties are not always easy to individualize, and distinctions are not usually made. There are three important mineral polymorphs of serpentine: antigorite, lizardite and chrysotile.

↑ Return to Menu

Hydroxyl in the context of Nucleic acid secondary structure


Nucleic acid secondary structure is the basepairing interactions within a single nucleic acid polymer or between two polymers. It can be represented as a list of bases which are paired in a nucleic acid molecule.The secondary structures of biological DNAs and RNAs tend to be different: biological DNA mostly exists as fully base paired double helices, while biological RNA is single stranded and often forms complex and intricate base-pairing interactions due to its increased ability to form hydrogen bonds stemming from the extra hydroxyl group in the ribose sugar.

In a non-biological context, secondary structure is a vital consideration in the nucleic acid design of nucleic acid structures for DNA nanotechnology and DNA computing, since the pattern of basepairing ultimately determines the overall structure of the molecules.

↑ Return to Menu

Hydroxyl in the context of Tannin

Tannins (or tannoids) are a class of astringent, polyphenolic biomolecules that bind to and precipitate proteins and various other organic compounds including amino acids and alkaloids. The term tannin is widely applied to any large polyphenolic compound containing sufficient hydroxyls and other suitable groups (such as carboxyls) to form strong complexes with various macromolecules.

The term tannin (from scientific French tannin, from French tan "crushed oak bark", tanner "to tan", cognate with English tanning, Medieval Latin tannare, from Proto-Celtic *tannos "oak") refers to the abundance of these compounds in oak bark, which was used in tanning animal hides into leather.

↑ Return to Menu

Hydroxyl in the context of Butanol

Butanol (also called butyl alcohol) is a four-carbon alcohol with a formula of C4H9OH, which occurs in five isomeric structures (four structural isomers), from a straight-chain primary alcohol to a branched-chain tertiary alcohol; all are a butyl or isobutyl group linked to a hydroxyl group (sometimes represented as BuOH, sec-BuOH, i-BuOH, and t-BuOH). These are 1-butanol, two stereoisomers of sec-butyl alcohol, isobutanol and tert-butyl alcohol. Butanol is primarily used as a solvent and as an intermediate in chemical synthesis, and may be used as a fuel. Biologically produced butanol is called biobutanol, which may be n-butanol or isobutanol.

↑ Return to Menu

Hydroxyl in the context of Alcohol (chemistry)

In chemistry, an alcohol (from Arabic al-kuḥl 'the kohl') is a type of organic compound that carries at least one hydroxyl (−OH) functional group bound to a saturated carbon atom. Alcohols range from the simple, like methanol and ethanol, to complex, like sugar alcohols and cholesterol. The presence of an OH group strongly modifies the properties of hydrocarbons, conferring hydrophilic (water-attracted) properties. The OH group provides a site at which many reactions can occur.

↑ Return to Menu

Hydroxyl in the context of Phenols

In organic chemistry, phenols, sometimes called phenolics, are a class of chemical compounds consisting of one or more hydroxyl groups (−O H) bonded directly to an aromatic hydrocarbon group. The simplest is phenol, C
6
H
5
OH
. Phenolic compounds are classified as simple phenols or polyphenols based on the number of phenol units in the molecule.

Phenols are both synthesized industrially and produced by plants and microorganisms.

↑ Return to Menu

Hydroxyl in the context of Homologous series

In organic chemistry, a homologous series is a sequence of compounds with the same functional group and similar chemical properties in which the members of the series differ by the number of repeating units they contain. This can be the length of a carbon chain, for example in the straight-chained alkanes (paraffins), or it could be the number of monomers in a homopolymer such as amylose. A homologue (also spelled as homolog) is a compound belonging to a homologous series.

Compounds within a homologous series typically have a fixed set of functional groups that gives them similar chemical and physical properties. (For example, the series of primary straight-chained alcohols has a hydroxyl at the end of the carbon chain.) These properties typically change gradually along the series, and the changes can often be explained by mere differences in molecular size and mass. The name "homologous series" is also often used for any collection of compounds that have similar structures or include the same functional group, such as the general alkanes (straight and branched), the alkenes (olefins), the carbohydrates, etc. However, if the members cannot be arranged in a linear order by a single parameter, the collection may be better called a "chemical family" or "class of homologous compounds" than a "series".

↑ Return to Menu

Hydroxyl in the context of Sterol

A sterol is any organic compound with a skeleton closely related to cholestan-3-ol and having a hydroxyl group at carbon 3. The simplest sterol is gonan-3-ol, which has a formula of C
17
H
28
O
, and is derived from that of gonane by replacement of a hydrogen atom on C3 position by a hydroxyl group. It is therefore an alcohol of gonane.

More generally, any compounds that contain the gonane structure, additional functional groups, and/or modified ring systems derived from gonane are called steroids. Therefore, sterols are a subgroup of the steroids. They occur naturally in most eukaryotes, including plants, animals, and fungi, and can also be produced by some bacteria (however likely with different functions). The most familiar type of animal sterol is cholesterol, which is vital to the structure of the cell membrane, and functions as a precursor to fat-soluble vitamins and steroid hormones. While technically alcohols, sterols are classified by biochemists as lipids (fats in the broader sense of the term).

↑ Return to Menu