Hydraulic head in the context of "Fluid pressure"

Play Trivia Questions online!

or

Skip to study material about Hydraulic head in the context of "Fluid pressure"

Ad spacer

⭐ Core Definition: Hydraulic head

Hydraulic head or piezometric head is a measurement related to liquid pressure (normalized by specific weight) and the liquid elevation above a vertical datum.It is usually measured as an equivalent liquid surface elevation, expressed in units of length, at the entrance (or bottom) of a piezometer. In an aquifer, it can be calculated from the depth to water in a piezometric well (a specialized water well), and given information of the piezometer's elevation and screen depth. Hydraulic head can similarly be measured in a column of water using a standpipe piezometer by measuring the height of the water surface in the tube relative to a common datum. The hydraulic head can be used to determine a hydraulic gradient between two or more points.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Hydraulic head in the context of Field capacity

Field capacity is the amount of soil moisture or water content held in the soil after excess water has drained away and the rate of downward movement has decreased. This usually occurs two to three days after rain or irrigation in pervious soils of uniform structure and texture. The nominal definition of field capacity (expressed symbolically as θfc) is the bulk water content retained in soil at −33 kPa (or −0.33 bar) of hydraulic head or suction pressure. The term originated from Israelsen and West and Frank Veihmeyer and Arthur Hendrickson.

Veihmeyer and Hendrickson realized the limitation in this measurement and commented that it is affected by so many factors that, precisely, it is not a constant (for a particular soil), yet it does serve as a practical measure of soil water-holding capacity. Field capacity improves on the concept of moisture equivalent by Lyman Briggs. Veihmeyer & Hendrickson proposed this concept as an attempt to improve water-use efficiency for farmers in California in 1949.

↑ Return to Menu

Hydraulic head in the context of Vadose zone

The vadose zone (from the Latin word for "shallow"), also termed the unsaturated zone, is the part of Earth between the land surface and the top of the phreatic zone, the position at which the groundwater (the water in the soil's pores) is at atmospheric pressure. Hence, the vadose zone extends from the top of the ground surface to the water table.

Water in the vadose zone has a pressure head less than atmospheric pressure, and is retained by a combination of adhesion (funiculary groundwater), and capillary action (capillary groundwater). If the vadose zone envelops soil, the water contained therein is termed soil moisture. In fine grained soils, capillary action can cause the pores of the soil to be fully saturated above the water table at a pressure less than atmospheric. The vadose zone does not include the area that is still saturated above the water table, often referred to as the capillary fringe.

↑ Return to Menu

Hydraulic head in the context of Water table

The water table is the upper surface of the phreatic zone or zone of saturation. The zone of saturation is where the pores and fractures of the ground are saturated with groundwater, which may be fresh, saline, or brackish, depending on the locality. It can also be simply explained as the depth below which the ground is saturated. The portion above the water table is the vadose zone. It may be visualized as the "surface" of the subsurface materials that are saturated with groundwater in a given vicinity.

In coarse soils, the water table settles at the surface where the water pressure head is equal to the atmospheric pressure (where gauge pressure = 0). In soils where capillary action is strong, the water table is pulled upward, forming a capillary fringe.

↑ Return to Menu

Hydraulic head in the context of Hydraulic conductivity

In science and engineering, hydraulic conductivity (K, in SI units of meters per second), is a property of porous materials, soils and rocks, that describes the ease with which a fluid (usually water) can move through the pore space, or fracture network. It depends on the intrinsic permeability (k, unit: m) of the material, the degree of saturation, and on the density and viscosity of the fluid. Saturated hydraulic conductivity, Ksat, describes water movement through saturated media.By definition, hydraulic conductivity is the ratio of volume flux to hydraulic gradient yielding a quantitative measure of a saturated soil's ability to transmit water when subjected to a hydraulic gradient.

↑ Return to Menu

Hydraulic head in the context of Pressure retarded osmosis

Pressure retarded osmosis (PRO) is a technique to separate a solvent (for example, fresh water) from a solution that is more concentrated (e.g. sea water) and also pressurized. A semipermeable membrane allows the solvent to pass to the concentrated solution side by osmosis. The technique can be used to generate power from the salinity gradient energy resulting from the difference in the salt concentration between sea and river water.

↑ Return to Menu

Hydraulic head in the context of Degree of reaction

In turbomachinery, degree of reaction or reaction ratio (denoted R) is defined as the ratio of the change in static pressure in the rotating blades of a compressor or turbine, to the static pressure change in the compressor or turbine stage. Alternatively it is the ratio of static enthalpy change in the rotor to the static enthalpy change in the stage.

Various definitions exist in terms of enthalpies, pressures or flow geometry of the device. In case of turbines, both impulse and reaction machines, degree of reaction is defined as the ratio of energy transfer by the change in static head to the total energy transfer in the rotor:

↑ Return to Menu

Hydraulic head in the context of Groundwater flow

In hydrogeology, groundwater flow is defined as the "part of streamflow that has infiltrated the ground, entered the phreatic zone, and has been (or is at a particular time) discharged into a stream channel or springs; and seepage water." It is governed by the groundwater flow equation.Groundwater is water that is found underground in cracks and spaces in the soil, sand and rocks. Where water has filled these spaces is the phreatic (also called) saturated zone. Groundwater is stored in and moves slowly (compared to surface runoff in temperate conditions and watercourses) through layers or zones of soil, sand and rocks: aquifers. The rate of groundwater flow depends on the permeability (the size of the spaces in the soil or rocks and how well the spaces are connected) and the hydraulic head (water pressure).

In polar regions groundwater flow may be obstructed by permafrost.

↑ Return to Menu

Hydraulic head in the context of Hydraulic ram

A hydraulic ram pump, ram pump, or hydram is a cyclic water pump powered by hydropower. It takes in water at one "hydraulic head" (pressure) and flow rate, and outputs water at a higher hydraulic head and lower flow rate. The device uses the water hammer effect to develop pressure that allows a portion of the input water that powers the pump to be lifted to a point higher than where the water originally started. The hydraulic ram is sometimes used in remote areas, where there is both a source of low-head hydropower and a need for pumping water to a destination higher in elevation than the source. In this situation, the ram is often useful, since it requires no outside source of power other than the kinetic energy of flowing water.

↑ Return to Menu