Human microbiome in the context of "Pathogenic"

Play Trivia Questions online!

or

Skip to study material about Human microbiome in the context of "Pathogenic"

Ad spacer

⭐ Core Definition: Human microbiome

The human microbiome is the aggregate of all microbiota that reside on or within human tissues and biofluids along with the corresponding anatomical sites in which they reside, including the gastrointestinal tract, skin, mammary glands, seminal fluid, uterus, ovarian follicles, lung, saliva, oral mucosa, ocular surface, and the biliary tract. Types of human microbiota include bacteria, archaea, fungi, protists, and viruses. Though micro-animals can also live on the human body, they are typically excluded from this definition. In the context of genomics, the term human microbiome is sometimes used to refer to the collective genomes of resident microorganisms; however, the term human metagenome has the same meaning.

The human body hosts many microorganisms, with approximately the same order of magnitude of non-human cells as human cells. Some microorganisms that humans host are commensal, meaning they co-exist without harming humans; others have a mutualistic relationship with their human hosts. Conversely, some non-pathogenic microorganisms can harm human hosts via the metabolites they produce, like trimethylamine, which the human body converts to trimethylamine N-oxide via FMO3-mediated oxidation. Certain microorganisms perform tasks that are known to be useful to the human host, but the role of most of them is not well understood. Those that are expected to be present, and that under normal circumstances do not cause disease, are sometimes deemed normal flora or normal microbiota.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Human microbiome in the context of Gut flora

Gut microbiota, gut microbiome, or gut flora are the microorganisms, including bacteria, archaea, fungi, and viruses, that live in the digestive tracts of animals. The gastrointestinal metagenome is the aggregate of all the genomes of the gut microbiota. The gut is the main location of the human microbiome. The gut microbiota has broad impacts, including effects on colonization, resistance to pathogens, maintaining the intestinal epithelium, metabolizing dietary and pharmaceutical compounds, controlling immune function, and even behavior through the gut–brain axis.

The microbial composition of the gut microbiota varies across regions of the digestive tract. The colon contains the highest microbial density of any human-associated microbial community studied so far, representing between 300 and 1000 different species. Bacteria are the largest and to date, best studied component and 99% of gut bacteria come from about 30 or 40 species. About 55% of the dry mass of feces is bacteria. Over 99% of the bacteria in the gut are anaerobes, but in the cecum, aerobic bacteria reach high densities. It is estimated that the human gut microbiota has around a hundred times as many genes as there are in the human genome.

↑ Return to Menu

Human microbiome in the context of Human pathogen

A human pathogen is a pathogen (microbe or microorganism such as a virus, bacterium, prion, or fungus) that causes disease in humans.

The human physiological defense against common pathogens (such as Pneumocystis) is mainly the responsibility of the immune system with help by some of the body's normal microbiota. However, if the immune system or "good" microbiota are damaged in any way (such as by chemotherapy, human immunodeficiency virus (HIV), or antibiotics being taken to kill other pathogens), pathogenic bacteria that were being held at bay can proliferate and cause harm to the host. Such cases are called opportunistic infections.

↑ Return to Menu

Human microbiome in the context of Male pattern baldness

Pattern hair loss (also known as androgenetic alopecia (AGA)) is a hair loss condition that primarily affects the top and front of the scalp. In male-pattern hair loss (MPHL), the hair loss typically presents itself as either a receding front hairline, loss of hair on the crown and vertex of the scalp, or a combination of both. Female-pattern hair loss (FPHL) typically presents as a diffuse thinning of the hair across the entire scalp. The condition is caused by a combination of male sex hormones (balding never occurs in castrated men) and genetic factors.

Some research has found evidence for the role of oxidative stress in hair loss, the microbiome of the scalp, genetics, and circulating androgens; particularly dihydrotestosterone (DHT). Men with early onset androgenic alopecia (before the age of 35) have been deemed the male phenotypic equivalent for polycystic ovary syndrome (PCOS).

↑ Return to Menu

Human microbiome in the context of Human milk microbiome

The human milk microbiota, also known as human milk probiotics (HMP), encompasses the microbiota–the community of microorganisms–present within the human mammary glands and breast milk. Contrary to the traditional belief that human breast milk is sterile, advancements in both microbial culture and culture-independent methods have confirmed that human milk harbors diverse communities of bacteria. These communities are distinct in composition from other microbial populations found within the human body which constitute the human microbiome.

The microbiota in human milk serves as a potential source of commensal, mutualistic, and potentially probiotic bacteria for the infant gut microbiota. The World Health Organization (WHO) defines probiotics as "living organisms which, when administered in adequate amounts, confer a health benefit on the host."

↑ Return to Menu