Human Genome Project in the context of National Institutes of Health


Human Genome Project in the context of National Institutes of Health

Human Genome Project Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Human Genome Project in the context of "National Institutes of Health"


⭐ Core Definition: Human Genome Project

The Human Genome Project (HGP) was an international scientific research project with the goal of determining the base pairs that make up human DNA, and of identifying, mapping and sequencing all of the genes of the human genome from both a physical and a functional standpoint. It started in 1990 and was completed in 2003. It was the world's largest collaborative biological project. Planning for the project began in 1984 by the US government, and it officially launched in 1990. It was declared complete on 14 April 2003, and included about 92% of the genome. Level "complete genome" was achieved in May 2021, with only 0.3% of the bases covered by potential issues. The final gapless assembly was finished in January 2022.

Funding came from the US government through the National Institutes of Health (NIH) as well as numerous other groups from around the world. A parallel project was conducted outside the government by the Celera Corporation, or Celera Genomics, which was formally launched in 1998. Most of the government-sponsored sequencing was performed in twenty universities and research centres in the United States, the United Kingdom, Japan, France, Germany, and China, working in the International Human Genome Sequencing Consortium (IHGSC).

↓ Menu
HINT:

In this Dossier

Human Genome Project in the context of Genome

A genome is all the genetic information of an organism or cell. It consists of nucleotide sequences of DNA (or RNA in RNA viruses). The nuclear genome includes protein-coding genes and non-coding genes, other functional regions of the genome such as regulatory sequences (see non-coding DNA), and often a substantial fraction of junk DNA with no evident function. Almost all eukaryotes have mitochondria and a small mitochondrial genome. Algae and plants also contain chloroplasts with a chloroplast genome.

The study of the genome is called genomics. The genomes of many organisms have been sequenced and various regions have been annotated. The first genome to be sequenced was that of the virus φX174 in 1977; the first genome sequence of a prokaryote (Haemophilus influenzae) was published in 1995; the yeast (Saccharomyces cerevisiae) genome was the first eukaryotic genome to be sequenced in 1996. The Human Genome Project was started in October 1990, and the first draft sequences of the human genome were reported in February 2001.

View the full Wikipedia page for Genome
↑ Return to Menu

Human Genome Project in the context of MIT

The Massachusetts Institute of Technology (MIT) is a private research university in Cambridge, Massachusetts, United States. Established in 1861, MIT has played a significant role in the development of many areas of modern technology and science.

In response to American industrialization, William Barton Rogers organized a school in Boston to create "useful knowledge." Initially funded by a federal land grant, the institute adopted a polytechnic model that stressed laboratory instruction in applied science and engineering. MIT moved from Boston to Cambridge in 1916 and grew rapidly through collaboration with private industry, military branches, and new federal basic research agencies, the formation of which was influenced by MIT faculty like Vannevar Bush. In the late twentieth century, MIT became a leading center for research in computer science, digital technology, artificial intelligence and big science initiatives like the Human Genome Project. Engineering remains its largest school, though MIT has also built programs in basic science, social sciences, business management, and humanities.

View the full Wikipedia page for MIT
↑ Return to Menu

Human Genome Project in the context of Genome project

Genome projects are scientific endeavours that ultimately aim to determine the complete genome sequence of an organism (be it an animal, a plant, a fungus, a bacterium, an archaean, a protist or a virus) and to annotate protein-coding genes and other important genome-encoded features. The genome sequence of an organism includes the collective DNA sequences of each chromosome in the organism. For a bacterium containing a single chromosome, a genome project will aim to map the sequence of that chromosome. For the human species, whose genome includes 22 pairs of autosomes and 2 sex chromosomes, a complete genome sequence will involve 46 separate chromosome sequences.

The Human Genome Project is a well known example of a genome project.

View the full Wikipedia page for Genome project
↑ Return to Menu

Human Genome Project in the context of United States Department of Energy

The United States Department of Energy (DOE) is an executive department of the U.S. federal government that oversees U.S. national energy policy and energy production, the research and development of nuclear power, the military's nuclear weapons program, nuclear reactor production for the United States Navy, energy-related research, and energy conservation.

The DOE was created in 1977 in the aftermath of the 1973 oil crisis. It sponsors more physical science research than any other U.S. federal agency, the majority of which is conducted through its system of National Laboratories. The DOE also directs research in genomics, with the Human Genome Project originating from a DOE initiative.

View the full Wikipedia page for United States Department of Energy
↑ Return to Menu

Human Genome Project in the context of Computational biology

Computational biology refers to the use of techniques in computer science, data analysis, mathematical modeling and computational simulations to understand biological systems and relationships. An intersection of computer science, biology, and data science, the field also has foundations in applied mathematics, molecular biology, cell biology, chemistry, and genetics.

View the full Wikipedia page for Computational biology
↑ Return to Menu

Human Genome Project in the context of Proteomics

Proteomics is the large-scale study of proteins. It is an interdisciplinary domain that has benefited greatly from the genetic information of various genome projects, including the Human Genome Project. It covers the exploration of proteomes from the overall level of protein composition, structure, and activity, and is an important component of functional genomics. The proteome is the entire set of proteins produced or modified by an organism or system.

Proteomics generally denotes the large-scale experimental analysis of proteins and proteomes, but often refers specifically to protein purification and mass spectrometry. Indeed, mass spectrometry is the most powerful method for analysis of proteomes, both in large samples composed of millions of cells, and in single cells.

View the full Wikipedia page for Proteomics
↑ Return to Menu

Human Genome Project in the context of Allele-specific oligonucleotide

An anti-sense oligonucleotide (ASO) is a short piece of synthetic DNA complementary to the sequence of a variable target DNA. It acts as a probe for the presence of the target in a Southern blot assay or, more commonly, in the simpler dot blot assay. It is a common tool used in genetic testing, forensics, and molecular biology research.

An ASO is typically an oligonucleotide of 15–21 nucleotide bases in length. It is designed (and used) in a way that makes it specific for only one version, or allele, of the DNA being tested. The length of the ASO, which strand it is chosen from, and the conditions by which it is bound to (and washed from) the target DNA all play a role in its specificity. These probes can usually be designed to detect a difference of as little as 1 base in the target's genetic sequence, a basic ability in the assay of single-nucleotide polymorphisms (SNPs), important in genotype analysis and the Human Genome Project. To be detected after it has bound to its target, the ASO must be labeled with a radioactive, enzymatic, or fluorescent tag. The Illumina Methylation Assay technology takes advantage of ASO to detect one base pair difference (cytosine versus thymine) to measure methylation at a specific CpG site.

View the full Wikipedia page for Allele-specific oligonucleotide
↑ Return to Menu

Human Genome Project in the context of Protein isoform

A protein isoform, or "protein variant", is a member of a set of highly similar proteins that originate from a single gene and are the result of genetic differences. While many perform the same or similar biological roles, some isoforms have unique functions. A set of protein isoforms may be formed from alternative splicings, variable promoter usage, or other post-transcriptional modifications of a single gene; post-translational modifications are generally not considered. (For that, see Proteoforms.) Through RNA splicing mechanisms, mRNA has the ability to select different protein-coding segments (exons) of a gene, or even different parts of exons from RNA to form different mRNA sequences. Each unique sequence produces a specific form of a protein.

The discovery of isoforms could explain the discrepancy between the small number of protein coding regions of genes revealed by the Human Genome Project and the large diversity of proteins seen in an organism: different proteins encoded by the same gene could increase the diversity of the proteome. Isoforms at the RNA level are readily characterized by cDNA transcript studies. Many human genes possess confirmed alternative splicing isoforms. It has been estimated that ~100,000 expressed sequence tags (ESTs) can be identified in humans. Isoforms at the protein level can manifest in the deletion of whole domains or shorter loops, usually located on the surface of the protein.

View the full Wikipedia page for Protein isoform
↑ Return to Menu

Human Genome Project in the context of Bacterial artificial chromosome

A bacterial artificial chromosome (BAC) is a DNA construct, based on a functional fertility plasmid (or F-plasmid), used for transforming and cloning in bacteria, usually E. coli. F-plasmids play a crucial role because they contain partition genes that promote the even distribution of plasmids after bacterial cell division. The bacterial artificial chromosome's usual insert size is 150–350 kbp. A similar cloning vector called a PAC has also been produced from the DNA of P1 bacteriophage.

BACs were often used to sequence the genomes of organisms in genome projects, for example the Human Genome Project, though they have been replaced by more modern technologies. In BAC sequencing, short piece of the organism's DNA is amplified as an insert in BACs, and then sequenced. Finally, the sequenced parts are rearranged in silico, resulting in the genomic sequence of the organism. BACs were replaced with faster and less laborious sequencing methods like whole genome shotgun sequencing and now more recently next-gen sequencing.

View the full Wikipedia page for Bacterial artificial chromosome
↑ Return to Menu

Human Genome Project in the context of Race and genetics

Researchers have investigated the relationship between race and genetics as part of efforts to understand how biology may or may not contribute to human racial categorization. Today, the consensus among scientists is that race is a social construct, and that using it as a proxy for genetic differences among populations is misleading.

Many constructions of race are associated with phenotypical traits and geographic ancestry, and scholars like Carl Linnaeus have proposed scientific models for the organization of race since at least the 18th century. Following the discovery of Mendelian genetics and the mapping of the human genome, questions about the biology of race have often been framed in terms of genetics. A wide range of research methods have been employed to examine patterns of human variation and their relations to ancestry and racial groups, including studies of individual traits, studies of large populations and genetic clusters, and studies of genetic risk factors for disease.

View the full Wikipedia page for Race and genetics
↑ Return to Menu

Human Genome Project in the context of Drug discovery

In the fields of medicine, biotechnology, and pharmacology, drug discovery is the process by which new candidate medications are discovered.

Historically, drugs were discovered by identifying the active ingredient from traditional remedies or by serendipitous discovery, as with penicillin. More recently, chemical libraries of synthetic small molecules, natural products, or extracts were screened in intact cells or whole organisms to identify substances that had a desirable therapeutic effect in a process known as classical pharmacology. After sequencing of the human genome allowed rapid cloning and synthesis of large quantities of purified proteins, it has become common practice to use high-throughput screening of large compound libraries against isolated biological targets which are hypothesized to be disease-modifying in a process known as reverse pharmacology. Hits from these screens are then tested in cells and then in animals for efficacy.

View the full Wikipedia page for Drug discovery
↑ Return to Menu