Hot pressing in the context of "Cutting tool"

Play Trivia Questions online!

or

Skip to study material about Hot pressing in the context of "Cutting tool"




⭐ Core Definition: Hot pressing

Hot pressing is a high-pressure, low-strain-rate powder metallurgy process for forming of a powder or powder compact at a temperature high enough to induce sintering and creep processes. This is achieved by the simultaneous application of heat and pressure.

Hot pressing is mainly used to fabricate hard and brittle materials. One large use is in the consolidation of diamond-metal composite cutting tools and technical ceramics. The densification works through particle rearrangement and plastic flow at the particle contacts. The loose powder or the pre-compacted part is in most of the cases filled to a graphite mould that allows induction or resistance heating up to temperatures of typically 2,400 °C (4,350 °F). Pressures of up to 50 MPa (7,300 psi) can be applied. Other great use is in the pressing of different types of polymers, but this is done with lower temperatures and pressures such as those found in the open source hot press.

↓ Menu

In this Dossier

Hot pressing in the context of Hydraulic actuator

A hydraulic cylinder (also called a linear hydraulic motor) is a mechanical actuator that is used to give a unidirectional force through a unidirectional stroke. It has many applications, notably in construction equipment (engineering vehicles), manufacturing machinery, elevators, and civil engineering. A hydraulic cylinder is a hydraulic actuator that provides linear motion when hydraulic energy is converted into mechanical movement. It can be likened to a muscle in that, when the hydraulic system of a machine is activated, the cylinder is responsible for providing the motion.

↑ Return to Menu

Hot pressing in the context of Ultra-high temperature ceramic

Ultra-high-temperature ceramics (UHTCs) are a type of refractory ceramics that can withstand extremely high temperatures without degrading, often above 2,000 °C. They also often have high thermal conductivities and are highly resistant to thermal shock, meaning they can withstand sudden and extreme changes in temperature without cracking or breaking. Chemically, they are usually borides, carbides, nitrides, and oxides of early transition metals.

UHTCs are used in various high-temperature applications, such as heat shields for spacecraft, furnace linings, hypersonic aircraft components and nuclear reactor components. They can be fabricated through various methods, including hot pressing, spark plasma sintering, and chemical vapor deposition. Despite their advantages, UHTCs also have some limitations, such as their brittleness and difficulty in machining. However, ongoing research is focused on improving the processing techniques and mechanical properties of UHTCs.

↑ Return to Menu