Hologram in the context of Wave interference


Hologram in the context of Wave interference

Hologram Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Hologram in the context of "Wave interference"


⭐ Core Definition: Hologram

Holography is a technique that allows a wavefront to be recorded and later reconstructed. It is best known as a method of generating three-dimensional images, and has a wide range of other uses, including data storage, microscopy, and interferometry. In principle, it is possible to make a hologram for any type of wave.

A hologram is a recording of an interference pattern that can reproduce a 3D light field using diffraction. In general usage, a hologram is a recording of any type of wavefront in the form of an interference pattern. It can be created by capturing light from a real scene, or it can be generated by a computer, in which case it is known as a computer-generated hologram, which can show virtual objects or scenes. Optical holography needs a laser light to record the light field. The reproduced light field can generate an image that has the depth and parallax of the original scene. A hologram is usually unintelligible when viewed under diffuse ambient light. When suitably lit, the interference pattern diffracts the light into an accurate reproduction of the original light field, and the objects that were in it exhibit visual depth cues such as parallax and perspective that change realistically with the different angles of viewing. That is, the view of the image from different angles shows the subject viewed from similar angles.

↓ Menu
HINT:

In this Dossier

Hologram in the context of Interferometry

Interferometry is a technique which uses the interference of superimposed waves to extract information. Interferometry typically uses electromagnetic waves and is an important investigative technique in the fields of astronomy, fiber optics, engineering metrology, optical metrology, oceanography, seismology, spectroscopy (and its applications to chemistry), quantum mechanics, nuclear and particle physics, plasma physics, biomolecular interactions, surface profiling, microfluidics, mechanical stress/strain measurement, velocimetry, optometry, and making holograms.

Interferometers are devices that extract information from interference. They are widely used in science and industry for the measurement of microscopic displacements, refractive index changes and surface irregularities. In the case with most interferometers, light from a single source is split into two beams that travel in different optical paths, which are then combined again to produce interference; two incoherent sources can also be made to interfere under some circumstances. The resulting interference fringes give information about the difference in optical path lengths. In analytical science, interferometers are used to measure lengths and the shape of optical components with nanometer precision; they are the highest-precision length measuring instruments in existence. In Fourier transform spectroscopy they are used to analyze light containing features of absorption or emission associated with a substance or mixture. An astronomical interferometer consists of two or more separate telescopes that combine their signals, offering a resolution equivalent to that of a telescope of diameter equal to the largest separation between its individual elements.

View the full Wikipedia page for Interferometry
↑ Return to Menu

Hologram in the context of Holographic sight

A holographic weapon sight or holographic diffraction sight is a non-magnifying gunsight that allows the user to look through a glass optical window and see a holographic reticle image superimposed at a distance on the field of view. The hologram of the reticle is built into the window and is illuminated by a laser diode.

View the full Wikipedia page for Holographic sight
↑ Return to Menu

Hologram in the context of Computer-generated hologram

Computer-generated holography (CGH) is a technique that uses computer algorithms to generate holograms. It involves generating holographic interference patterns. A computer-generated hologram can be displayed on a dynamic holographic display, or it can be printed onto a mask or film using lithography. When a hologram is printed onto a mask or film, it is then illuminated by a coherent light source to display the holographic images.

The term "computer-generated holography" has become used to denote the whole process chain of synthetically preparing holographic light wavefronts suitable for observation. If holographic data of existing objects is generated optically and recorded and processed digitally, and subsequently displayed, this is termed CGH as well.

View the full Wikipedia page for Computer-generated hologram
↑ Return to Menu