History of science in the Renaissance in the context of "Mathematical astronomy"

Play Trivia Questions online!

or

Skip to study material about History of science in the Renaissance in the context of "Mathematical astronomy"

Ad spacer

⭐ Core Definition: History of science in the Renaissance

During the Renaissance, great advances occurred in geography, astronomy, chemistry, physics, mathematics, manufacturing, anatomy and engineering. The collection of ancient scientific texts began in earnest at the start of the 15th century and continued up to the Fall of Constantinople in 1453, and the invention of printing allowed a faster propagation of new ideas. Nevertheless, some have seen the Renaissance, at least in its initial period, as one of scientific backwardness. Historians like George Sarton and Lynn Thorndike criticized how the Renaissance affected science, arguing that progress was slowed for some amount of time. Humanists favored human-centered subjects like politics and history over study of natural philosophy or applied mathematics. More recently, however, scholars have acknowledged the positive influence of the Renaissance on mathematics and science, pointing to factors like the rediscovery of lost or obscure texts and the increased emphasis on the study of language and the correct reading of texts.

Marie Boas Hall coined the term Scientific Renaissance to designate the early phase of the Scientific Revolution, 1450–1630. More recently, Peter Dear has argued for a two-phase model of early modern science: a Scientific Renaissance of the 15th and 16th centuries, focused on the restoration of the natural knowledge of the ancients; and a Scientific Revolution of the 17th century, when scientists shifted from recovery to innovation.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

History of science in the Renaissance in the context of Theoretical astronomy

Theoretical astronomy is the use of analytical and computational models based on principles from physics and chemistry to describe and explain astronomical objects and astronomical phenomena. Theorists in astronomy endeavor to create theoretical models and from the results predict observational consequences of those models. The observation of a phenomenon predicted by a model allows astronomers to select between several alternate or conflicting models as the one best able to describe the phenomena.

Ptolemy's Almagest, although a brilliant treatise on theoretical astronomy combined with a practical handbook for computation, nevertheless includes compromises to reconcile discordant observations with a geocentric model. Modern theoretical astronomy is usually assumed to have begun with the work of Johannes Kepler (1571–1630), particularly with Kepler's laws. The history of the descriptive and theoretical aspects of the Solar System mostly spans from the late sixteenth century to the end of the nineteenth century.

↑ Return to Menu

History of science in the Renaissance in the context of Renaissance technology

Renaissance technology was the set of European artifacts and inventions which spread through the Renaissance period, roughly the 14th century through the 16th century. The era is marked by profound technical advancements such as the printing press, linear perspective in drawing, patent law, double shell domes and bastion fortresses. Sketchbooks from artisans of the period (Taccola and Leonardo da Vinci, for example) give a deep insight into the mechanical technology then known and applied.

Renaissance science spawned the Scientific Revolution; science and technology began a cycle of mutual advancement.

↑ Return to Menu

History of science in the Renaissance in the context of Ibn Al-Haytham

Ibn al-Haytham, Latinized as Alhazen (c. 965 – c. 1040) was a mathematician, astronomer, and physicist of the Islamic Golden Age from present-day Iraq. Referred to as "the father of modern optics", he made significant contributions to the principles of optics and visual perception in particular. His most influential work is titled Kitāb al-Manāẓir (Arabic: كتاب المناظر, "Book of Optics"), written during 1011–1021, which survived in a Latin edition. The works of Alhazen were frequently cited during the scientific revolution by Isaac Newton, Johannes Kepler, Christiaan Huygens, and Galileo Galilei.

Ibn al-Haytham was the first to correctly explain vision as intromissive rather than extramissive, and to argue that vision occurs in the brain, pointing to observations that it is subjective and affected by personal experience. He also stated the principle of least time for refraction which would later become Fermat's principle. He made major contributions to catoptrics and dioptrics by studying reflection, refraction and nature of images formed by light rays. Ibn al-Haytham was an early proponent of the concept that a hypothesis must be supported by experiments based on confirmable procedures or mathematical reasoning – an early pioneer in the scientific method five centuries before Renaissance scientists, he is sometimes described as the world's "first true scientist". He was also a polymath, writing on philosophy, theology and medicine.

↑ Return to Menu