Histology in the context of "H"

Play Trivia Questions online!

or

Skip to study material about Histology in the context of "H"

Ad spacer

⭐ Core Definition: Histology

Histology, also known as microscopic anatomy, microanatomy or histoanatomy, is the branch of biology that studies the microscopic anatomy of biological tissues. Histology is the microscopic counterpart to gross anatomy, which looks at larger structures visible without a microscope.

Historically, microscopic anatomy was divided into organology, the study of organs, histology, the study of tissues, and cytology, the study of cells, although modern usage places all of these topics under the field of histology. In medicine, histopathology is the branch of histology that includes the microscopic identification and study of diseased tissue. In the field of paleontology, the term paleohistology refers to the histology of fossil organisms.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Histology in the context of Human anatomy

Human anatomy (gr. ἀνατομία, "dissection", from ἀνά, "up", and τέμνειν, "cut") is primarily the scientific study of the morphology of the human body. Anatomy is subdivided into gross anatomy and microscopic anatomy. Gross anatomy (also called macroscopic anatomy, topographical anatomy, regional anatomy, or anthropotomy) is the study of anatomical structures that can be seen by the naked eye. Microscopic anatomy is the study of minute anatomical structures assisted with microscopes, which includes histology (the study of the organization of tissues), and cytology (the study of cells). Anatomy, human physiology (the study of function), and biochemistry (the study of the chemistry of living structures) are complementary basic medical sciences that are generally together (or in tandem) to students studying medical sciences.

In some of its facets human anatomy is closely related to embryology, comparative anatomy and comparative embryology, through common roots in evolution; for example, much of the human body maintains the ancient segmental pattern that is present in all vertebrates with basic units being repeated, which is particularly obvious in the vertebral column and in the ribcage, and can be traced from very early embryos.

↑ Return to Menu

Histology in the context of Malaria

Malaria is a mosquito-borne infectious disease that affects vertebrates and Anopheles mosquitoes. Human malaria causes symptoms that typically include fever, fatigue, vomiting, and headaches. In severe cases, it can cause jaundice, seizures, coma, or death. Symptoms usually begin 10 to 15 days after being bitten by an infected Anopheles mosquito. If not properly treated, people may have recurrences of the disease months later. In those who have recently survived an infection, reinfection usually causes milder symptoms. This partial resistance disappears over months to years if the person has no continuing exposure to malaria. The mosquitoes themselves are harmed by malaria, causing reduced lifespans in those infected by it.

Malaria is caused by single-celled eukaryotes of the genus Plasmodium. In mammals, it is spread through bites of infected female Anopheles mosquitoes. The mosquito bite introduces the parasites from the mosquito's saliva into the blood. The parasites travel to the liver, where they mature and reproduce. Five species of Plasmodium commonly infect humans. The three species associated with more severe cases are P. falciparum (which is responsible for the vast majority of malaria deaths), P. vivax, and P. knowlesi (a simian malaria that spills over into thousands of people a year). P. ovale and P. malariae generally cause a milder form of malaria. Malaria is typically diagnosed by the microscopic examination of blood using blood films, or with antigen-based rapid diagnostic tests. Methods that use the polymerase chain reaction to detect the parasite's DNA have been developed, but they are not widely used in areas where malaria is common, due to their cost and complexity.

↑ Return to Menu

Histology in the context of Andreas Schimper

Andreas Franz Wilhelm Schimper (12 May 1856 – 9 September 1901) was a German botanist and phytogeographer who made major contributions in the fields of histology, ecology and plant geography. He travelled to South East Asia and the Caribbean as part of the 1899 deep-sea expedition. He coined the terms tropical rainforest and sclerophyll and is commemorated in numerous specific names.

↑ Return to Menu

Histology in the context of Human cell

The list of human cell types provides an enumeration and description of the various specialized cells found within the human body, highlighting their distinct functions, characteristics, and contributions to overall physiological processes. Cells may be classified by their physiological function, histology (microscopic anatomy), lineage, or gene expression.

↑ Return to Menu

Histology in the context of Renal pathology

Renal pathology is a subspecialty of anatomic pathology that deals with the diagnosis and characterization of medical diseases (non-tumor) of the kidneys. In the academic setting, renal pathologists work closely with nephrologists and transplant surgeons, who typically obtain diagnostic specimens via percutaneous renal biopsy. The renal pathologist must synthesize findings from light microscopy, electron microscopy, and immunofluorescence to obtain a definitive diagnosis. Medical renal diseases may affect the glomerulus, the tubules and interstitium, the vessels, or a combination of these compartments.

↑ Return to Menu

Histology in the context of Microscopy

Microscopy is the technical field of using microscopes to view subjects too small to be seen with the naked eye (objects that are not within the resolution range of the normal eye). There are three well-known branches of microscopy: optical, electron, and scanning probe microscopy, along with the emerging field of X-ray microscopy.

Optical microscopy and electron microscopy involve the diffraction, reflection, or refraction of electromagnetic radiation/electron beams interacting with the specimen, and the collection of the scattered radiation or another signal in order to create an image. This process may be carried out by wide-field irradiation of the sample (for example standard light microscopy and transmission electron microscopy) or by scanning a fine beam over the sample (for example confocal laser scanning microscopy and scanning electron microscopy). Scanning probe microscopy involves the interaction of a scanning probe with the surface of the object of interest. The development of microscopy revolutionized biology, gave rise to the field of histology and so remains an essential technique in the life and physical sciences. X-ray microscopy is three-dimensional and non-destructive, allowing for repeated imaging of the same sample for in situ or 4D studies, and providing the ability to "see inside" the sample being studied before sacrificing it to higher resolution techniques. A 3D X-ray microscope uses the technique of computed tomography (microCT), rotating the sample 360 degrees and reconstructing the images. CT is typically carried out with a flat panel display. A 3D X-ray microscope employs a range of objectives, e.g., from 4X to 40X, and can also include a flat panel.

↑ Return to Menu

Histology in the context of Gross anatomy

Gross anatomy is the study of anatomy at the visible or macroscopic level. It is the counterpart to histology, which studies microscopic anatomy. Gross anatomy of the human body or other animals seeks to understand the relationship between components of an organism in order to gain a greater appreciation of the roles of those components and their relationships in maintaining the functions of life. The study of gross anatomy can be performed on deceased organisms using dissection or on living organisms using medical imaging. Education in the gross anatomy of humans includes training for most health professionals.

↑ Return to Menu

Histology in the context of Santiago Ramón y Cajal

Santiago Ramón y Cajal (Spanish: [sanˈtjaɣo raˈmon i kaˈxal]; 1 May 1852 – 17 October 1934) was a Spanish neuroscientist, pathologist, and histologist specialising in neuroanatomy, and the central nervous system. He and Camillo Golgi received the Nobel Prize in Physiology or Medicine in 1906. Ramón y Cajal was the first Spaniard to win a scientific Nobel Prize. His original investigations of the microscopic structure of the brain made him a pioneer of modern neuroscience.

Hundreds of his drawings illustrating the arborization (tree-like growth) of brain cells are still in use, since the mid-20th century, for educational and training purposes.

↑ Return to Menu

Histology in the context of Toluidine blue stain

Toluidine blue, also known as TBO or tolonium chloride (INN) is a blue cationic (basic) dye used in histology (as the toluidine blue stain) and sometimes clinically.

↑ Return to Menu