Hipparcos Catalog in the context of "Main-sequence star"

Play Trivia Questions online!

or

Skip to study material about Hipparcos Catalog in the context of "Main-sequence star"

Ad spacer

⭐ Core Definition: Hipparcos Catalog

Hipparcos was a scientific satellite of the European Space Agency (ESA), launched in 1989 and operated until 1993. It was the first space experiment devoted to precision astrometry, the accurate measurement of the positions and distances of celestial objects on the sky. This was the first practical attempt at all-sky absolute parallax measurement, something not possible with groundside observatories, and thus represented a fundamental breakthrough in astronomy. The resulting high-precision measurements of the absolute positions, proper motions, and parallaxes of stars enabled better calculations of their distance and tangential velocity; when combined with radial velocity measurements from spectroscopy, astrophysicists were able to finally measure all six quantities needed to determine the motion of stars. The resulting Hipparcos Catalogue, a high-precision catalogue of more than 118,200 stars, was published in 1997. The lower-precision Tycho Catalogue of more than a million stars was published at the same time, while the enhanced Tycho-2 Catalogue of 2.5 million stars was published in 2000. Hipparcos's follow-up mission, Gaia, was launched in 2013.

The word "Hipparcos" is an acronym for High Precision Parallax Collecting Satellite and also a reference to the ancient Greek astronomer Hipparchus of Nicaea, who is noted for applications of trigonometry to astronomy and his discovery of the precession of the equinoxes.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Hipparcos Catalog in the context of Main sequence

In astrophysics, the main sequence is a classification of stars which appear on plots of stellar color versus brightness as a continuous and distinctive band. Stars spend the majority of their lives on the main sequence, during which core hydrogen burning is dominant. These main-sequence stars, or sometimes interchangeably dwarf stars, are the most numerous true stars in the universe and include the Sun. Color-magnitude plots are known as Hertzsprung–Russell diagrams after Ejnar Hertzsprung and Henry Norris Russell.

When a gaseous nebula undergoes sufficient gravitational collapse, the high pressure and temperature concentrated at the core will trigger the nuclear fusion of hydrogen into helium (see stars). The thermal energy from this process radiates out from the hot, dense core, generating a strong pressure gradient. It is this pressure gradient that counters the star's collapse under gravity, maintaining the star in a state of hydrostatic equilibrium. The star's position on the main sequence is determined primarily by the mass, but also by age and chemical composition. As a result, radiation is not the only method of energy transfer in stars. Convection plays a role in the movement of energy, particularly in the cores of stars greater than 1.3 to 1.5 times the Sun's mass, again depending on age and chemical composition.

↑ Return to Menu