Heterocyclic compound in the context of Porphyrins


Heterocyclic compound in the context of Porphyrins

Heterocyclic compound Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Heterocyclic compound in the context of "Porphyrins"


⭐ Core Definition: Heterocyclic compound

A heterocyclic compound or ring structure is a cyclic compound that has atoms of at least two different elements as members of its ring(s). Heterocyclic organic chemistry is the branch of organic chemistry dealing with the synthesis, properties, and applications of organic heterocycles.

Examples of heterocyclic compounds include all of the nucleic acids, the majority of drugs, most biomass (cellulose and related materials), and many natural and synthetic dyes. More than half of known compounds are heterocycles. 59% of US FDA-approved drugs contain nitrogen heterocycles.

↓ Menu
HINT:

In this Dossier

Heterocyclic compound in the context of Pyrimidine

Pyrimidine (C4H4N2; /pɪˈrɪ.mɪˌdn, pˈrɪ.mɪˌdn/) is an aromatic, heterocyclic, organic compound similar to pyridine (C5H5N). One of the three diazines (six-membered heterocyclics with two nitrogen atoms in the ring), it has nitrogen atoms at positions 1 and 3 in the ring. The other diazines are pyrazine (nitrogen atoms at the 1 and 4 positions) and pyridazine (nitrogen atoms at the 1 and 2 positions).

In nucleic acids, three types of nucleobases are pyrimidine derivatives: cytosine (C), thymine (T), and uracil (U).

View the full Wikipedia page for Pyrimidine
↑ Return to Menu

Heterocyclic compound in the context of Purine

Purine is a heterocyclic aromatic organic compound that consists of two rings (pyrimidine and imidazole) fused together. It is water-soluble. Purine also gives its name to the wider class of molecules, purines, which include substituted purines and their tautomers. They are the most widely occurring nitrogen-containing heterocycles in nature.

View the full Wikipedia page for Purine
↑ Return to Menu

Heterocyclic compound in the context of Porphyrin

Porphyrins (/ˈpɔːrfərɪns/ POR-fər-ins) are heterocyclic, macrocyclic, organic compounds, composed of four modified pyrrole subunits interconnected at their α carbon atoms via methine bridges (=CH−). In vertebrates, an essential member of the porphyrin group is heme, which is a component of hemoproteins, whose functions include carrying oxygen in the bloodstream. In plants, an essential porphyrin derivative is chlorophyll, which is involved in light harvesting and electron transfer in photosynthesis.

The parent of porphyrins is porphine, a rare chemical compound of exclusively theoretical interest. Substituted porphines are called porphyrins. With a total of 26 π-electrons the porphyrin ring structure is a coordinated aromatic system. One result of the large conjugated system is that porphyrins absorb strongly in the visible region of the electromagnetic spectrum, i.e. they are deeply colored. The name "porphyrin" derives from Greek πορφύρα (porphyra) 'purple'.

View the full Wikipedia page for Porphyrin
↑ Return to Menu

Heterocyclic compound in the context of Uric acid

Uric acid is a heterocyclic compound of carbon, nitrogen, oxygen, and hydrogen with the formula C5H4N4O3. It forms ions and salts known as urates and acid urates, such as ammonium acid urate. Uric acid is a product of the metabolic breakdown of purine nucleotides, and it is a normal component of urine. High blood concentrations of uric acid can lead to gout and are associated with other medical conditions, including diabetes and the formation of ammonium acid urate kidney stones.

View the full Wikipedia page for Uric acid
↑ Return to Menu

Heterocyclic compound in the context of Polythiophenes

Polythiophenes (PTs) are polymerized thiophenes, a sulfur heterocycle. The parent PT is an insoluble colored solid with the formula (C4H2S)n. The rings are linked through the 2- and 5-positions. Poly(alkylthiophene)s have alkyl substituents at the 3- or 4-position(s). They are also colored solids, but tend to be soluble in organic solvents.

PTs become conductive when oxidized. The electrical conductivity results from the delocalization of electrons along the polymer backbone. Conductivity however is not the only interesting property resulting from electron delocalization. The optical properties of these materials respond to environmental stimuli, with dramatic color shifts in response to changes in solvent, temperature, applied potential, and binding to other molecules. Changes in both color and conductivity are induced by the same mechanism, twisting of the polymer backbone and disrupting conjugation, making conjugated polymers attractive as sensors that can provide a range of optical and electronic responses.

View the full Wikipedia page for Polythiophenes
↑ Return to Menu

Heterocyclic compound in the context of Pyridine

Pyridine is a basic heterocyclic organic compound with the chemical formula C5H5N. It is structurally related to benzene, with one methine group (=CH−) replaced by a nitrogen atom (=N−). It is a highly flammable, weakly alkaline, water-miscible liquid with a distinctive, unpleasant fish-like smell. Pyridine is colorless, but older or impure samples can appear yellow. The pyridine ring occurs in many commercial compounds, including agrochemicals, pharmaceuticals, and vitamins. Historically, pyridine was produced from coal tar. As of 2016, it is synthesized on the scale of about 20,000 tons per year worldwide.

View the full Wikipedia page for Pyridine
↑ Return to Menu

Heterocyclic compound in the context of Polycyclic compound

In the field of organic chemistry, a polycyclic compound is an organic compound featuring several closed rings of atoms, primarily carbon. These ring substructures include cycloalkanes, aromatics, and other ring types. They come in sizes of three atoms and upward, and in combinations of linkages that include tethering (such as in biaryls), fusing (edge-to-edge, such as in anthracene and steroids), links via a single atom (such as in spiro compounds), bridged compounds, and longifolene. Though poly- literally means "many", there is some latitude in determining how many rings are required to be considered polycyclic; many smaller rings are described by specific prefixes (e.g., bicyclic, tricyclic, tetracyclic, etc.), and so while it can refer to these, the title term is used with most specificity when these alternative names and prefixes are unavailable.

In general, the term polycyclic includes polycyclic aromatic compounds, including polycyclic aromatic hydrocarbons, as well as heterocyclic aromatic compounds with multiple rings (where heteroaromatic compounds are aromatic compounds that contain sulfur, nitrogen, oxygen, or another non-carbon atoms in their rings in addition to carbon).

View the full Wikipedia page for Polycyclic compound
↑ Return to Menu

Heterocyclic compound in the context of Cyclic compound

A cyclic compound (or ring compound) is a term for a compound in the field of chemistry in which one or more series of atoms in the compound is connected to form a ring. Rings may vary in size from three to many atoms, and include examples where all the atoms are carbon (i.e., are carbocycles), none of the atoms are carbon (inorganic cyclic compounds), or where both carbon and non-carbon atoms are present (heterocyclic compounds with rings containing both carbon and non-carbon). Depending on the ring size, the bond order of the individual links between ring atoms, and their arrangements within the rings, carbocyclic and heterocyclic compounds may be aromatic or non-aromatic; in the latter case, they may vary from being fully saturated to having varying numbers of multiple bonds between the ring atoms. Because of the tremendous diversity allowed, in combination, by the valences of common atoms and their ability to form rings, the number of possible cyclic structures, even of small size (e.g., < 17 total atoms) numbers in the many billions.

Adding to their complexity and number, closing of atoms into rings may lock particular atoms with distinct substitution (by functional groups) such that stereochemistry and chirality of the compound results, including some manifestations that are unique to rings (e.g., configurational isomers). As well, depending on ring size, the three-dimensional shapes of particular cyclic structures – typically rings of five atoms and larger – can vary and interconvert such that conformational isomerism is displayed. Indeed, the development of this important chemical concept arose historically in reference to cyclic compounds. Finally, cyclic compounds, because of the unique shapes, reactivities, properties, and bioactivities that they engender, are the majority of all molecules involved in the biochemistry, structure, and function of living organisms, and in man-made molecules such as drugs, pesticides, etc.

View the full Wikipedia page for Cyclic compound
↑ Return to Menu

Heterocyclic compound in the context of Heteroatom

In chemistry, a heteroatom (from Ancient Greek heteros 'different' and atomos 'uncut') is, strictly, any atom that is not carbon or hydrogen.

View the full Wikipedia page for Heteroatom
↑ Return to Menu

Heterocyclic compound in the context of Tetrahydrofuran

Tetrahydrofuran (THF), or oxolane, is an organic compound with the formula (CH2)4O. The compound is classified as heterocyclic compound, specifically a cyclic ether. It is a colorless, water-miscible organic liquid with low viscosity. It is mainly used as a precursor to polymers. Being polar and having a wide liquid range, THF is a versatile solvent. It is an isomer of another solvent, butanone.

View the full Wikipedia page for Tetrahydrofuran
↑ Return to Menu

Heterocyclic compound in the context of Benzotriazole

Benzotriazole (BTA) is a heterocyclic compound with the chemical formula C6H4N3H. It can be viewed as the fusion of a benzene and triazole rings. It is a white solid, although impure samples can appear tan. It is used as a corrosion inhibitor for copper and silver.

View the full Wikipedia page for Benzotriazole
↑ Return to Menu

Heterocyclic compound in the context of Benzothiazine

Benzothiazine is a heterocyclic compound consisting of a benzene ring attached to the 6-membered heterocycle thiazine. The name is applied to both the 2H- and 4H-isomers of the molecule.

2,1-Benzothiazine, a type of benzothiazines was first reported in the 1960s. Subsequently, their preparation and intensive biological and physiological studies have been reported. In recent years, 2,1-benzothiazines have been of enormous interest to synthetic chemists. An enantioselective synthesis of such benzothiazines has been developed by Harmata and Hong who have formulated transformations of these compounds designed to target chiral, non-racemic building blocks as well as natural products.

View the full Wikipedia page for Benzothiazine
↑ Return to Menu

Heterocyclic compound in the context of Diels–Alder reaction

In organic chemistry, the Diels–Alder reaction is a chemical reaction between a conjugated diene and a substituted alkene, commonly termed the dienophile, to form a substituted cyclohexene derivative. It is the prototypical example of a pericyclic reaction with a concerted mechanism. More specifically, it is classified as a thermally allowed [4+2] cycloaddition with Woodward–Hoffmann symbol [π4s + π2s]. It was first described by Otto Diels and Kurt Alder in 1928. For the discovery of this reaction, they were awarded the Nobel Prize in Chemistry in 1950. Through the simultaneous construction of two new carbon–carbon bonds, the Diels–Alder reaction provides a reliable way to form six-membered rings with good control over the regio- and stereochemical outcomes. Consequently, it has served as a powerful and widely applied tool for the introduction of chemical complexity in the synthesis of natural products and new materials. The underlying concept has also been applied to π-systems involving heteroatoms, such as carbonyls and imines, which furnish the corresponding heterocycles; this variant is known as the hetero-Diels–Alder reaction. The reaction has also been generalized to other ring sizes, although none of these generalizations have matched the formation of six-membered rings in terms of scope or versatility. Because of the negative values of ΔH° and ΔS° for a typical Diels–Alder reaction, the microscopic reverse of a Diels–Alder reaction becomes favorable at high temperatures, although this is of synthetic importance for only a limited range of Diels–Alder adducts, generally with some special structural features; this reverse reaction is known as the retro-Diels–Alder reaction.

View the full Wikipedia page for Diels–Alder reaction
↑ Return to Menu

Heterocyclic compound in the context of Pyrroline

Pyrrolines, also known under the name dihydropyrroles, are three different heterocyclic organic chemical compounds that differ in the position of the double bond. Pyrrolines are formally derived from the aromate pyrrole by hydrogenation. 1-Pyrroline is a cyclic imine, whereas 2-pyrroline and 3-pyrroline are cyclic amines.

View the full Wikipedia page for Pyrroline
↑ Return to Menu

Heterocyclic compound in the context of Thiophene

Thiophene is a heterocyclic compound with the formula C4H4S. Consisting of a planar five-membered ring, it is aromatic as indicated by its extensive substitution reactions. It is a colorless liquid with a benzene-like odor. In most of its reactions, it resembles benzene. Compounds analogous to thiophene include furan (C4H4O), selenophene (C4H4Se) and pyrrole (C4H4NH), which each vary by the heteroatom in the ring.

View the full Wikipedia page for Thiophene
↑ Return to Menu