Helix in the context of "Helicobacter pylori"

Play Trivia Questions online!

or

Skip to study material about Helix in the context of "Helicobacter pylori"

Ad spacer

⭐ Core Definition: Helix

A helix (/ˈhlɪks/; pl.helices) is a shape like a cylindrical coil spring or the thread of a machine screw. It is a type of smooth skew curve with tangent lines at a constant angle to a fixed axis. Helices are important in biology, as the DNA molecule is formed as two intertwined helices, and many proteins have helical substructures, known as alpha helices. The word helix comes from the Greek word ἕλιξ, "twisted, curved". A "filled-in" helix – for example, a "spiral" (helical) ramp – is a surface called a helicoid.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Helix in the context of Structure of DNA

In molecular biology, the double helix is the structure formed by double-stranded molecules of nucleic acids such as DNA. The double-helical structure of a nucleic acid complex arises as a consequence of its secondary structure, and is a fundamental component in determining its tertiary structure.

The DNA double-helix biopolymer of nucleic acids is held together by nucleotides which base pair together. In B-DNA, the most common double-helical structure found in nature, the double helix is right-handed with about 10–10.5 base pairs per turn. The double-helix structure of DNA contains a major groove and minor groove. In B-DNA the major groove is wider than the minor groove. Given the difference in widths of the major groove and minor groove, many proteins which bind to B-DNA do so through the wider major groove.

↑ Return to Menu

Helix in the context of Marine virus

Marine viruses are defined by their habitat as viruses that are found in marine environments, that is, in the saltwater of seas or oceans or the brackish water of coastal estuaries. Viruses are small infectious agents that can only replicate inside the living cells of a host organism, because they need the replication machinery of the host to do so. They can infect all types of life forms, from animals and plants to microorganisms, including bacteria and archaea.

When not inside a cell or in the process of infecting a cell, viruses exist in the form of independent particles called virions. A virion contains a genome (a long molecule that carries genetic information in the form of either DNA or RNA) surrounded by a capsid (a protein coat protecting the genetic material). The shapes of these virus particles range from simple helical and icosahedral forms for some virus species to more complex structures for others. Most virus species have virions that are too small to be seen with an optical microscope. The average virion is about one one-hundredth the linear size of the average bacterium.

↑ Return to Menu

Helix in the context of Lathe

A lathe (/lð/) is a machine tool that rotates a workpiece about an axis of rotation to perform various operations such as cutting, sanding, knurling, drilling, deformation, facing, threading and turning, with tools that are applied to the workpiece to create an object with symmetry about that axis.

Lathes are used in woodturning, metalworking, metal spinning, thermal spraying, reclamation, and glass-working. Lathes can be used to shape pottery, the best-known such design being the potter's wheel. Most suitably equipped metalworking lathes can be used to produce most solids of revolution, plane surfaces, and screw threads or helices. Ornamental lathes can produce more complex three-dimensional solids. The workpiece is usually held in place by either one or two centers, at least one of which can typically be moved horizontally to accommodate varying workpiece lengths. Other work-holding methods include clamping the work about the axis of rotation using a chuck or collet, or attaching it to a faceplate using clamps or dog clutch. Lathes equipped with special lathe milling fixtures can be used to complete milling operations.

↑ Return to Menu

Helix in the context of Virus

A virus is a submicroscopic infectious agent that replicates only inside the living cells of an organism. Viruses infect all life forms, from animals and plants to microorganisms, including bacteria and archaea. Viruses are found in almost every ecosystem on Earth and are the most numerous type of biological entity. Since Dmitri Ivanovsky's 1892 article describing a non-bacterial pathogen infecting tobacco plants and the discovery of the tobacco mosaic virus by Martinus Beijerinck in 1898, more than 16,000 of the millions of virus species have been described in detail. The study of viruses is known as virology, a subspeciality of microbiology.

When infected, a host cell is often forced to rapidly produce thousands of copies of the original virus. When not inside an infected cell or in the process of infecting a cell, viruses exist in the form of independent viral particles, or virions, consisting of (i) genetic material, i.e., long molecules of DNA or RNA that encode the structure of the proteins by which the virus acts; (ii) a protein coat, the capsid, which surrounds and protects the genetic material; and in some cases (iii) an outside envelope of lipids. The shapes of these virus particles range from simple helical and icosahedral forms to more complex structures. Most virus species have virions too small to be seen with an optical microscope and are one-hundredth the size of most bacteria.

↑ Return to Menu

Helix in the context of Polynucleotide

In molecular biology, a polynucleotide (from Ancient Greek πολυς (polys) 'many') is a biopolymer composed of nucleotide monomers that are covalently bonded in a chain. DNA (deoxyribonucleic acid) and RNA (ribonucleic acid) are examples of polynucleotides with distinct biological functions. DNA consists of two chains of polynucleotides, with each chain in the form of a helix (like a spiral staircase).

↑ Return to Menu

Helix in the context of Spirogyra

Spirogyra (common names include water silk, mermaid's tresses, and blanket weed) is a genus of filamentous charophyte green algae of the order Zygnematales, named for the helical or spiral arrangement of the chloroplasts that is characteristic of the genus. Spirogyra species, of which there are more than 500, are commonly found in freshwater habitats. Spirogyra measures approximately 10 to 150 micrometres in width (though not usually more than 60) and may grow to several centimetres in length.

↑ Return to Menu