Heating and air conditioning in the context of "Mechanical engineering"

Play Trivia Questions online!

or

Skip to study material about Heating and air conditioning in the context of "Mechanical engineering"

Ad spacer

⭐ Core Definition: Heating and air conditioning

Heating, ventilation, and air conditioning (HVAC /ˈˌvæk/) systems use advanced technologies to regulate temperature, humidity, and indoor air quality in residential, commercial, and industrial buildings, and in enclosed vehicles. Its goal is to provide thermal comfort and remove contaminants from the air. HVAC system design is a subdiscipline of mechanical engineering, based on the principles of thermodynamics, fluid mechanics, and heat transfer. Modern HVAC designs focus on energy efficiency and sustainability, especially with the rising demand for green building solutions. In modern construction, MEP (Mechanical, Electrical, and Plumbing) engineers integrate HVAC systems with energy modeling techniques to optimize system performance and reduce operational costs. "Refrigeration" is sometimes added to the field's abbreviation as HVAC&R or HVACR, or "ventilation" is dropped, as in HACR (as in the designation of HACR-rated circuit breakers).

HVAC is an important part of residential structures such as single family homes, apartment buildings, hotels, and senior living facilities; medium to large industrial and office buildings such as skyscrapers and hospitals; vehicles such as cars, trains, airplanes, ships and submarines; and in marine environments, where safe and healthy building conditions are regulated with respect to temperature and humidity, using fresh air from outdoors.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Heating and air conditioning in the context of Energy technology

Energy development is the field of activities focused on obtaining sources of energy from natural resources. These activities include the production of renewable, nuclear, and fossil fuel derived sources of energy, and for the recovery and reuse of energy that would otherwise be wasted. Energy conservation and efficiency measures reduce the demand for energy development, and can have benefits to society with improvements to environmental issues.

Societies use energy for transportation, manufacturing, illumination, heating and air conditioning, and communication, for industrial, commercial, agricultural and domestic purposes. Energy resources may be classified as primary resources, where the resource can be used in substantially its original form, or as secondary resources, where the energy source must be converted into a more conveniently usable form. Non-renewable resources are significantly depleted by human use, whereas renewable resources are produced by ongoing processes that can sustain indefinite human exploitation.

↑ Return to Menu