Heat sink in the context of Graphics processing unit


Heat sink in the context of Graphics processing unit

Heat sink Study page number 1 of 2

Play TriviaQuestions Online!

or

Skip to study material about Heat sink in the context of "Graphics processing unit"


⭐ Core Definition: Heat sink

A heat sink (also commonly spelled heatsink) is a passive heat exchanger that transfers the heat generated by an electronic or a mechanical device to a fluid medium, often air or a liquid coolant, where it is dissipated away from the device, thereby allowing regulation of the device's temperature. In computers, heat sinks are used to cool CPUs, GPUs, and some chipsets and RAM modules. Heat sinks are used with other high-power semiconductor devices such as power transistors and optoelectronics such as lasers and light-emitting diodes (LEDs), where the heat dissipation ability of the component itself is insufficient to moderate its temperature.

A heat sink is designed to maximize its surface area in contact with the cooling medium surrounding it, such as the air. Air velocity, choice of material, protrusion design and surface treatment are factors that affect the performance of a heat sink. Heat sink attachment methods and thermal interface materials also affect the die temperature of the integrated circuit. Thermal adhesive or thermal paste improve the heat sink's performance by filling air gaps between the heat sink and the heat spreader on the device. A heat sink is usually made out of a material with a high thermal conductivity, such as aluminium or copper.

↓ Menu
HINT:

In this Dossier

Heat sink in the context of Atmospheric circulation

Atmospheric circulation is the large-scale movement of air and together with ocean circulation is the means by which thermal energy is redistributed on the surface of Earth. Earth's atmospheric circulation varies from year to year, but the large-scale structure of its circulation remains fairly constant. The smaller-scale weather systems – mid-latitude depressions, or tropical convective cells – occur chaotically, and long-range weather predictions of those cannot be made beyond ten days in practice, or a month in theory (see chaos theory and the butterfly effect).

Earth's weather is a consequence of its illumination by the Sun and the laws of thermodynamics. The atmospheric circulation can be viewed as a heat engine driven by the Sun's energy and whose energy sink, ultimately, is the blackness of space. The work produced by that engine causes the motion of the masses of air, and in that process it redistributes the energy absorbed by Earth's surface near the tropics to the latitudes nearer the poles, and thence to space.

View the full Wikipedia page for Atmospheric circulation
↑ Return to Menu

Heat sink in the context of Thermal conductivity

The thermal conductivity of a material is a measure of its ability to conduct heat. It is commonly denoted by , , or and in SI units is measured in W·m·K. In such units, it is the amount of thermal energy in watts (joules per second) that flows from a hotter region to a colder region per Kelvin (or degree Celsius) difference in temperature per meter of separation.

Heat transfer occurs at a lower rate in materials of low thermal conductivity than in materials of high thermal conductivity. For instance, metals typically have high thermal conductivity and are very efficient at conducting heat, while the opposite is true for insulating materials such as mineral wool or Styrofoam. Metals have this high thermal conductivity due to free electrons facilitating heat transfer. Correspondingly, materials of high thermal conductivity are widely used in heat sink applications, and materials of low thermal conductivity are used as thermal insulation. The reciprocal of thermal conductivity is called thermal resistivity.

View the full Wikipedia page for Thermal conductivity
↑ Return to Menu

Heat sink in the context of Rankine cycle

The Rankine cycle is an idealized thermodynamic cycle describing the process by which certain heat engines, such as steam turbines or reciprocating steam engines, allow mechanical work to be extracted from a fluid as it moves between a heat source and heat sink. The Rankine cycle is named after William John Macquorn Rankine, a Scottish polymath professor at Glasgow University.

Heat energy is supplied to the system via a boiler where the working fluid (typically water) is converted to a high-pressure gaseous state (steam) in order to turn a turbine. After passing over the turbine the fluid is allowed to condense back into a liquid state as waste heat energy is rejected before being returned to boiler, completing the cycle. Friction losses throughout the system are often neglected for the purpose of simplifying calculations as such losses are usually much less significant than thermodynamic losses, especially in larger systems.

View the full Wikipedia page for Rankine cycle
↑ Return to Menu

Heat sink in the context of Dust

Dust is made of fine particles of solid matter. On Earth, it generally consists of particles in the atmosphere that come from various sources such as soil lifted by wind (an aeolian process), volcanic eruptions, and pollution.

Dust in homes is composed of about 20–50% dead skin cells. The rest, and in offices and other built environments, is composed of small amounts of plant pollen, human hairs, animal fur, textile fibers, paper fibers, minerals from outdoor soil, burnt meteorite particles, and many other materials which may be found in the local environment.

View the full Wikipedia page for Dust
↑ Return to Menu

Heat sink in the context of Light-emitting diode

In electrical engineering, a light-emitting diode (LED) is a semiconductor device that emits light when current flows through it. Electrons in the semiconductor recombine with electron holes, releasing energy in the form of photons. The color of the light (corresponding to the energy of the photons) is determined by the energy required for electrons to cross the band gap of the semiconductor. White light is obtained by using multiple semiconductors or a layer of light-emitting phosphor on the semiconductor device.

Appearing as practical electronic components in 1962, the earliest LEDs emitted low-intensity infrared (IR) light. Infrared LEDs are used in remote-control circuits, such as those used with a wide variety of consumer electronics. The first visible-light LEDs were of low intensity and limited to red.

View the full Wikipedia page for Light-emitting diode
↑ Return to Menu

Heat sink in the context of Thermal engineering

Thermal engineering is a specialized sub-discipline of mechanical engineering that deals with the movement of heat energy and transfer. The energy can be transferred between two mediums or transformed into other forms of energy. A thermal engineer will have knowledge of thermodynamics and the process of converting generated energy from thermal sources into chemical, mechanical, or electrical energy. Many process plants use a wide variety of machines that utilize components that use heat transfer in some way. Many plants use heat exchangers in their operations. A thermal engineer must allow the proper amount of energy to be transferred for the correct use. Too much and the components could fail, too little and the system will not function at all. Thermal engineers must have an understanding of economics and the components that they will be servicing or interacting with. Some components that a thermal engineer could work with include heat exchangers, heat sinks, bi-metals strips, and radiators. Some systems that require a thermal engineer include boilers, heat pumps, water pumps, and engines.

Part of being a thermal engineer is to improve a current system and make it more efficient than the current system. Many industries employ thermal engineers, some main ones are the automotive manufacturing industry, commercial construction, and the heating ventilation and cooling industry. Job opportunities for a thermal engineer are very broad and promising.

View the full Wikipedia page for Thermal engineering
↑ Return to Menu

Heat sink in the context of Thermal management (electronics)

All electronic devices and circuitry generate excess heat and thus require thermal management to improve reliability and prevent premature failure. The amount of heat output is equal to the power input, if there are no other energy interactions. There are several techniques for cooling including various styles of heat sinks, thermoelectric coolers, forced air systems and fans, heat pipes, and others. In cases of extreme low environmental temperatures, it may actually be necessary to heat the electronic components to achieve satisfactory operation.

View the full Wikipedia page for Thermal management (electronics)
↑ Return to Menu

Heat sink in the context of Heat exchangers

A heat exchanger is a system used to transfer heat between a source and a working fluid. Heat exchangers are used in both cooling and heating processes. The fluids may be separated by a solid wall to prevent mixing or they may be in direct contact. They are widely used in space heating, refrigeration, air conditioning, power stations, chemical plants, petrochemical plants, petroleum refineries, natural-gas processing, and sewage treatment. The classic example of a heat exchanger is found in an internal combustion engine in which a circulating fluid known as engine coolant flows through radiator coils and air flows past the coils, which cools the coolant and heats the incoming air. Another example is the heat sink, which is a passive heat exchanger that transfers the heat generated by an electronic or a mechanical device to a fluid medium, often air or a liquid coolant.

View the full Wikipedia page for Heat exchangers
↑ Return to Menu

Heat sink in the context of Passive cooling

Passive cooling is a building design approach that focuses on heat gain control and heat dissipation in a building in order to improve the indoor thermal comfort with low or no energy consumption. This approach works either by preventing heat from entering the interior (heat gain prevention) or by removing heat from the building (natural cooling).

Natural cooling utilizes on-site energy, available from the natural environment, combined with the architectural design of building components (e.g. building envelope), rather than mechanical systems to dissipate heat. Therefore, natural cooling depends not only on the architectural design of the building but on how the site's natural resources are used as heat sinks (i.e. everything that absorbs or dissipates heat). Examples of on-site heat sinks are the upper atmosphere (night sky), the outdoor air (wind), and the earth/soil.

View the full Wikipedia page for Passive cooling
↑ Return to Menu

Heat sink in the context of Air cooling

Air cooling is a method of dissipating heat. It works by expanding the surface area or increasing the flow of air over the object to be cooled, or both. An example of the former is to add cooling fins to the surface of the object, either by making them integral or by attaching them tightly to the object's surface (to ensure efficient heat transfer). In the case of the latter, it is done by using a fan blowing air into or onto the object one wants to cool. The addition of fins to a heat sink increases its total surface area, resulting in greater cooling effectiveness. There are two types of cooling pads that can be used for air cooling: one is the honeycomb design and another one is excelsior.

In all cases, the air has to be cooler than the object or surface from which it is expected to remove heat. This is due to the second law of thermodynamics, which states that heat will only move spontaneously from a hot reservoir (the heat sink) to a cold reservoir (the air).

View the full Wikipedia page for Air cooling
↑ Return to Menu

Heat sink in the context of Thermal conductivity and resistivity

The thermal conductivity of a material is a measure of its ability to conduct heat. It is commonly denoted by , , or and in SI units is measured in W·m·K. In such units, it is the amount of thermal power in watts (joules per second) that flows from a hotter region to a colder region per Kelvin (or degree Celsius) difference in temperature per meter of separation.

Heat transfer occurs at a lower rate in materials of low thermal conductivity than in materials of high thermal conductivity. For instance, metals typically have high thermal conductivity and are very efficient at conducting heat, while the opposite is true for insulating materials such as mineral wool or Styrofoam. Metals have this high thermal conductivity due to free electrons facilitating heat transfer. Correspondingly, materials of high thermal conductivity are widely used in heat sink applications, and materials of low thermal conductivity are used as thermal insulation. The reciprocal of thermal conductivity is called thermal resistivity.

View the full Wikipedia page for Thermal conductivity and resistivity
↑ Return to Menu

Heat sink in the context of Dust bunny

Dust bunnies (or dustbunnies) are small clumps of dust that form under furniture and in corners that are not cleaned regularly. They are made of hair, lint, flakes of dead skin, spider webs, dust, and sometimes light rubbish and debris and are held together by static electricity and felt-like entanglement. They can house dust mites or other parasites and can lower the efficiency of dust filters by clogging them. The movement of a single large particle can start the formation of a dust bunny.

Dust bunnies are harmful to electronics because they can obstruct air flow through heat sinks, raising temperatures significantly and therefore shortening the life of electronic components.

View the full Wikipedia page for Dust bunny
↑ Return to Menu

Heat sink in the context of Computer cooling

Computer cooling is required to remove the waste heat produced by computer hardware, to keep components within permissible operating temperature limits. Components that are susceptible to temporary malfunction or permanent failure if overheated include integrated circuits such as central processing units (CPUs), chipsets, graphics cards, hard disk drives, and solid state drives (SSDs).

Components are often designed to generate as little heat as possible, and computers and operating systems may be designed to reduce power consumption and consequent heating according to workload, but more heat may still be produced than can be removed without attention to cooling. Use of heatsinks cooled by airflow reduces the temperature rise produced by a given amount of heat. Attention to patterns of airflow can prevent the development of hotspots. Computer fans are widely used along with heatsink fans to reduce temperature by actively exhausting hot air. There are also other cooling techniques, such as liquid cooling. All modern day processors are designed to cut out or reduce their voltage or clock speed if the internal temperature of the processor exceeds a specified limit. This is generally known as Thermal Throttling in the case of reduction of clock speeds, or Thermal Shutdown in the case of a complete shutdown of the device or system.

View the full Wikipedia page for Computer cooling
↑ Return to Menu

Heat sink in the context of Thermal paste

Thermal paste (also called thermal compound, thermal grease, thermal interface material (TIM), thermal gel, heat paste, heat sink compound, heat sink paste or CPU grease) is a thermally conductive (but usually not electrically conductive) chemical compound, which is commonly used as an interface between heat sinks and heat sources such as high-power semiconductor devices. The main role of thermal paste is to eliminate air gaps or spaces (which act as thermal insulation) from the interface area in order to maximize heat transfer and dissipation. Thermal paste is an example of a thermal interface material.

As opposed to thermal adhesive, thermal paste does not add mechanical strength to the bond between heat source and heat sink. It has to be coupled with a fastener such as screws to hold the heat sink in place and to apply pressure, spreading and thinning the thermal paste.

View the full Wikipedia page for Thermal paste
↑ Return to Menu

Heat sink in the context of Heat spreader

A heat spreader transfers energy as heat from a hotter source to a colder heat sink or heat exchanger. There are two thermodynamic types, passive and active. The most common sort of passive heat spreader is a plate or block of material having high thermal conductivity, such as copper, aluminum, or diamond. An active heat spreader speeds up heat transfer with expenditure of energy as work supplied by an external source.

View the full Wikipedia page for Heat spreader
↑ Return to Menu