Heat exchanger in the context of "Fouling"

Play Trivia Questions online!

or

Skip to study material about Heat exchanger in the context of "Fouling"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<

👉 Heat exchanger in the context of Fouling

Fouling is the accumulation of unwanted material on solid surfaces. The fouling materials can consist of either living organisms (biofouling, organic) or a non-living substance (inorganic). Fouling is usually distinguished from other surface-growth phenomena in that it occurs on a surface of a component, system, or plant performing a defined and useful function and that the fouling process impedes or interferes with this function.

Other terms used in the literature to describe fouling include deposit formation, encrustation, crudding, deposition, scaling, scale formation, slagging, and sludge formation. The last six terms have a more narrow meaning than fouling within the scope of the fouling science and technology, and they also have meanings outside of this scope; therefore, they should be used with caution.

↓ Explore More Topics
In this Dossier

Heat exchanger in the context of Waste heat recovery unit

A waste heat recovery unit (WHRU) is an energy recovery heat exchanger that transfers heat from process outputs at high temperature to another part of the process for some purpose, usually increased efficiency. The WHRU is a tool involved in cogeneration. Waste heat may be extracted from sources such as hot flue gases from a diesel generator, steam from cooling towers, or even waste water from cooling processes such as in steel cooling.

↑ Return to Menu

Heat exchanger in the context of Radiator

A radiator is a heat exchanger used to transfer thermal energy from one medium to another for the purpose of cooling and heating. The majority of radiators are constructed to function in cars, buildings, and electronics.

A radiator is always a source of heat to its environment, although this may be for either the purpose of heating an environment, or for cooling the fluid or coolant supplied to it, as for automotive engine cooling and HVAC dry cooling towers. Despite the name, most radiators transfer the bulk of their heat via convection instead of thermal radiation.

↑ Return to Menu

Heat exchanger in the context of External combustion engine

An external combustion engine (EC engine) is a reciprocating heat engine where a working fluid, contained internally, is heated by combustion in an external source, through the engine wall or a heat exchanger. The fluid then, by expanding and acting on the mechanism of the engine, produces motion and usable work. The fluid is then dumped (open cycle), or cooled, compressed and reused (closed cycle). In these types of engines, the combustion is primarily used as a heat source, and the engine can work equally well with other types of heat sources.

↑ Return to Menu

Heat exchanger in the context of Limescale

Limescale is a hard, chalky deposit, consisting mainly of calcium carbonate (CaCO3). It often builds up inside kettles, boilers, and pipework, especially those used for hot water. It is also often found as a similar deposit on the inner surfaces of old pipes and other surfaces where hard water has flowed. Limescale also forms as travertine or tufa in hard water springs.

The colour varies from off-white through a range of greys and pink or reddish browns, depending on the other minerals present. Iron compounds give the reddish-browns.

↑ Return to Menu

Heat exchanger in the context of Heat sink

A heat sink (also commonly spelled heatsink) is a passive heat exchanger that transfers the heat generated by an electronic or a mechanical device to a fluid medium, often air or a liquid coolant, where it is dissipated away from the device, thereby allowing regulation of the device's temperature. In computers, heat sinks are used to cool CPUs, GPUs, and some chipsets and RAM modules. Heat sinks are used with other high-power semiconductor devices such as power transistors and optoelectronics such as lasers and light-emitting diodes (LEDs), where the heat dissipation ability of the component itself is insufficient to moderate its temperature.

A heat sink is designed to maximize its surface area in contact with the cooling medium surrounding it, such as the air. Air velocity, choice of material, protrusion design and surface treatment are factors that affect the performance of a heat sink. Heat sink attachment methods and thermal interface materials also affect the die temperature of the integrated circuit. Thermal adhesive or thermal paste improve the heat sink's performance by filling air gaps between the heat sink and the heat spreader on the device. A heat sink is usually made out of a material with a high thermal conductivity, such as aluminium or copper.

↑ Return to Menu

Heat exchanger in the context of Airbreathing jet engine

An airbreathing jet engine (or ducted jet engine) is a jet engine in which the exhaust gas which supplies jet propulsion is atmospheric air, which is taken in, compressed, heated, and expanded back to atmospheric pressure through a propelling nozzle. Compression may be provided by a gas turbine, as in the original turbojet and newer turbofan, or arise solely from the ram pressure of the vehicle's velocity, as with the ramjet and pulsejet.

All practical airbreathing jet engines heat the air by burning fuel. Alternatively a heat exchanger may be used, as in a nuclear-powered jet engine. Most modern jet engines are turbofans, which are more fuel efficient than turbojets because the thrust supplied by the gas turbine is augmented by bypass air passing through a ducted fan.

↑ Return to Menu

Heat exchanger in the context of Thermal engineering

Thermal engineering is a specialized sub-discipline of mechanical engineering that deals with the movement of heat energy and transfer. The energy can be transferred between two mediums or transformed into other forms of energy. A thermal engineer will have knowledge of thermodynamics and the process of converting generated energy from thermal sources into chemical, mechanical, or electrical energy. Many process plants use a wide variety of machines that utilize components that use heat transfer in some way. Many plants use heat exchangers in their operations. A thermal engineer must allow the proper amount of energy to be transferred for the correct use. Too much and the components could fail, too little and the system will not function at all. Thermal engineers must have an understanding of economics and the components that they will be servicing or interacting with. Some components that a thermal engineer could work with include heat exchangers, heat sinks, bi-metals strips, and radiators. Some systems that require a thermal engineer include boilers, heat pumps, water pumps, and engines.

Part of being a thermal engineer is to improve a current system and make it more efficient than the current system. Many industries employ thermal engineers, some main ones are the automotive manufacturing industry, commercial construction, and the heating ventilation and cooling industry. Job opportunities for a thermal engineer are very broad and promising.

↑ Return to Menu

Heat exchanger in the context of Heat pump

A heat pump is a device that uses energy—generally mechanical energy, although the absorption heat pump instead uses thermal energy—to transfer heat from one space to another. The mechanical heat pump, also known as a Cullen engine, uses electric power to transfer heat by compression. Specifically, it transfers thermal energy by means of a heat pump and refrigeration cycle, cooling one space and warming the other. In winter, a heat pump can move heat from the cool outdoors to warm a house; in summer, it may also be designed to move heat from the house to the warmer outdoors. As it transfers rather than generates heat, it is more energy-efficient than heating by gas boiler.

In a typical vapour-compression heat pump, a gaseous refrigerant is compressed so its pressure and temperature rise. When the pump operates as a heater in cold weather, the warmed gas flows to a heat exchanger in the indoor space, where some of its thermal energy is transferred to that space, causing the gas to condense into a liquid. The liquified refrigerant flows to a heat exchanger in the outdoor space, where the pressure falls, the liquid evaporates, and the temperature of the gas falls. Now colder than the temperature of the outdoor space being used as a heat source, it can again take up energy from the heat source, be compressed, and repeat the cycle.

↑ Return to Menu

Heat exchanger in the context of Compact linear Fresnel reflector

A compact linear Fresnel reflector (CLFR) – also referred to as a concentrating linear Fresnel reflector – is a specific type of linear Fresnel reflector (LFR) technology. It is named for its similarity to a Fresnel lens, in which many small, thin lens fragments are combined to simulate a much thicker simple lens. These mirrors are capable of concentrating the sun's energy to approximately 30 times its normal intensity.

Linear Fresnel reflectors use long, thin segments of mirrors to focus sunlight onto a fixed absorber located at a common focal point of the reflectors. This concentrated energy is transferred through the absorber into some thermal fluid (this is typically oil capable of maintaining a liquid state at very high temperatures). The fluid then goes through a heat exchanger to power a steam generator. As opposed to traditional LFRs, the CLFR utilizes multiple absorbers within the vicinity of the mirrors.

↑ Return to Menu