Heat-affected zone in the context of Cutting


Heat-affected zone in the context of Cutting

Heat-affected zone Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Heat-affected zone in the context of "Cutting"


⭐ Core Definition: Heat-affected zone

In fusion welding, the heat-affected zone (HAZ) is the area of base material, either a metal or a thermoplastic, which is not melted but has had its microstructure and properties altered by welding or heat intensive cutting operations. The heat from the welding process and subsequent re-cooling causes this change from the weld interface to the termination of the sensitizing temperature in the base metal. The extent and magnitude of property change depends primarily on the base material, the weld filler metal, and the amount and concentration of heat input by the welding process.

The thermal diffusivity of the base material plays a large role—if the diffusivity is high, the material cooling rate is high and the HAZ is relatively small. Alternatively, a low diffusivity leads to slower cooling and a larger HAZ. The amount of heat input during the welding process also plays an important role as well, as processes like oxyfuel welding use high heat input and increase the size of the HAZ. Processes like laser beam welding and electron beam welding give a highly concentrated, limited amount of heat, resulting in a small HAZ. Arc welding falls between these two extremes, with the individual processes varying somewhat in heat input. To calculate the heat input for arc welding procedures, the following formula is used:

↓ Menu
HINT:

In this Dossier

Heat-affected zone in the context of Fusion welding

Fusion welding is a generic term for welding processes that rely on melting to join materials of similar compositions and melting points. Due to the high-temperature phase transitions inherent to these processes, a heat-affected zone is created in the material (although some techniques, like beam welding, often minimize this effect by introducing comparatively little heat into the workpiece).

In contrast to fusion welding, solid-state welding does not involve the melting of materials.

View the full Wikipedia page for Fusion welding
↑ Return to Menu