Hamilton–Jacobi equation in the context of Hamilton's optico-mechanical analogy


Hamilton–Jacobi equation in the context of Hamilton's optico-mechanical analogy

⭐ Core Definition: Hamilton–Jacobi equation

In physics, the Hamilton–Jacobi equation, named after William Rowan Hamilton and Carl Gustav Jacob Jacobi, is an alternative formulation of classical mechanics, equivalent to other formulations such as Newton's laws of motion, Lagrangian mechanics and Hamiltonian mechanics.

The Hamilton–Jacobi equation is a formulation of mechanics in which the motion of a particle can be represented as a wave. In this sense, it fulfilled a long-held goal of theoretical physics (dating at least to Johann Bernoulli in the eighteenth century) of finding an analogy between the propagation of light and the motion of a particle. The wave equation followed by mechanical systems is similar to, but not identical with, the Schrödinger equation, as described below; for this reason, the Hamilton–Jacobi equation is considered the "closest approach" of classical mechanics to quantum mechanics. The qualitative form of this connection is called Hamilton's optico-mechanical analogy.

↓ Menu
HINT:

In this Dossier

Hamilton–Jacobi equation in the context of Hamiltonian mechanics

In physics, Hamiltonian mechanics is a reformulation of Lagrangian mechanics that emerged in 1833. Introduced by Sir William Rowan Hamilton, Hamiltonian mechanics replaces (generalized) velocities used in Lagrangian mechanics with (generalized) momenta. Both theories provide interpretations of classical mechanics and describe the same physical phenomena.

Hamiltonian mechanics has a close relationship with geometry (notably, symplectic geometry and Poisson structures) and serves as a link between classical and quantum mechanics.

View the full Wikipedia page for Hamiltonian mechanics
↑ Return to Menu

Hamilton–Jacobi equation in the context of Canonical transformation

In Hamiltonian mechanics, a canonical transformation is a change of canonical coordinates (q, p) → (Q, P) that preserves the form of Hamilton's equations. This is sometimes known as form invariance. Although Hamilton's equations are preserved, it need not preserve the explicit form of the Hamiltonian itself. Canonical transformations are useful in their own right, and also form the basis for the Hamilton–Jacobi equations (a useful method for calculating conserved quantities) and Liouville's theorem (itself the basis for classical statistical mechanics).

Since Lagrangian mechanics is based on generalized coordinates, transformations of the coordinates qQ do not affect the form of Lagrange's equations and, hence, do not affect the form of Hamilton's equations if the momentum is simultaneously changed by a Legendre transformation intowhere are the new co‑ordinates, grouped in canonical conjugate pairs of momenta and corresponding positions for with being the number of degrees of freedom in both co‑ordinate systems.

View the full Wikipedia page for Canonical transformation
↑ Return to Menu