Hadronic in the context of LHCb


Hadronic in the context of LHCb

Hadronic Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Hadronic in the context of "LHCb"


⭐ Core Definition: Hadronic

In particle physics, a hadron is a composite subatomic particle made of two or more quarks held together by the strong nuclear force. Pronounced /ˈhædrɒn/ , the name is derived from Ancient Greek ἁδρός (hadrós) 'stout, thick'. They are analogous to molecules, which are held together by the electric force. Most of the mass of ordinary matter comes from two hadrons: the proton and the neutron, while most of the mass of the protons and neutrons is in turn due to the binding energy of their constituent quarks, due to the strong force.

Hadrons are categorized into two broad families: baryons, made of an odd number of quarks (usually three), and mesons, made of an even number of quarks (usually two: one quark and one antiquark). Protons and neutrons (which make the majority of the mass of an atom) are examples of baryons; pions are an example of a meson. A tetraquark state (an exotic meson), named the Z(4430), was discovered in 2007 by the Belle Collaboration and confirmed as a resonance in 2014 by the LHCb collaboration. Two pentaquark states (exotic baryons), named P
c
(4380)
and P
c
(4450)
, were discovered in 2015 by the LHCb collaboration. There are several other "Exotic" hadron candidates and other colour-singlet quark combinations that may also exist.

↓ Menu
HINT:

In this Dossier

Hadronic in the context of Hagedorn temperature

The Hagedorn temperature, TH, is the temperature in theoretical physics where hadronic matter (i.e. ordinary matter) is no longer stable, and must either "evaporate" or convert into quark matter; as such, it can be thought of as the "boiling point" of hadronic matter. It was discovered by Rolf Hagedorn. The Hagedorn temperature exists because the amount of energy available is high enough that matter particle (quarkantiquark) pairs can be spontaneously pulled from vacuum. Thus, naively considered, a system at Hagedorn temperature can accommodate as much energy as one can put in, because the formed quarks provide new degrees of freedom. However, if this phase is viewed as quarks instead, it becomes apparent that the matter has transformed into quark matter, which can be further heated.

The Hagedorn temperature, TH, is about 150 MeV/kB or about 1.7×10 K, little above the mass–energy of the lightest hadrons, the pion. Hagedorn was able not only to give a simple explanation for the thermodynamical aspect of high energy particle production, but also worked out a formula for the hadronic mass spectrum and predicted the limiting temperature for hot hadronic systems.

View the full Wikipedia page for Hagedorn temperature
↑ Return to Menu