HD 209458 in the context of "Radial velocity"

Play Trivia Questions online!

or

Skip to study material about HD 209458 in the context of "Radial velocity"




⭐ Core Definition: HD 209458

HD 209458 is a star with an orbiting exoplanet in the constellation Pegasus. It has an apparent visual magnitude of 7.65 and an absolute magnitude of 4.28. Because it is located at a distance of 157 light-years (48 parsecs) from the Sun as measured via parallax, it is not visible to the unaided eye. With good binoculars or a small telescope it should be easily detectable. The system is drifting closer with a heliocentric radial velocity of −14.8 km/s.

↓ Menu

In this Dossier

HD 209458 in the context of HD 209458 b

HD 209458 b is an exoplanet, specifically a hot Jupiter, that orbits the solar analog HD 209458 in the constellation Pegasus, some 157 light-years (48 parsecs) from the Solar System. It is sometimes informally called Osiris. The radius of the planet's orbit is 0.047 AU (7.0 million km; 4.4 million mi), or one-eighth the radius of Mercury's orbit (0.39 AU (36 million mi; 58 million km)). This small orbital distance results in a year that is 3.5 Earth-days long and an estimated surface temperature of about 1,000 °C (1,800 °F; 1,300 K). Its mass is 220 times that of Earth (0.69 Jupiter masses) and its volume is some 2.5 times greater than that of Jupiter. The high mass and volume of HD 209458 b indicate that it is a gas giant.

HD 209458 b represents a number of milestones in exoplanetary research. It was the first of many categories:

↑ Return to Menu

HD 209458 in the context of Absorption spectroscopy

Absorption spectroscopy is spectroscopy that involves techniques that measure the absorption of electromagnetic radiation, as a function of frequency or wavelength, due to its interaction with a sample. The sample absorbs energy, i.e., photons, from the radiating field. The intensity of the absorption varies as a function of frequency, and this variation is the absorption spectrum. Absorption spectroscopy is performed across the electromagnetic spectrum.

Absorption spectroscopy is employed as an analytical chemistry tool to determine the presence of a particular substance in a sample and, in many cases, to quantify the amount of the substance present. Infrared and ultraviolet–visible spectroscopy are particularly common in analytical applications. Absorption spectroscopy is also employed in studies of molecular and atomic physics, astronomical spectroscopy and remote sensing.

↑ Return to Menu