Observational cosmology is the study of the structure, the evolution and the origin of the universe through observation, using instruments such as telescopes and cosmic ray detectors.
Observational cosmology is the study of the structure, the evolution and the origin of the universe through observation, using instruments such as telescopes and cosmic ray detectors.
Edwin Powell Hubble (November 20, 1889 – September 28, 1953) was an American astronomer. He played a crucial role in establishing the fields of extragalactic astronomy and observational cosmology.
Hubble proved that many objects previously thought to be clouds of dust and gas and classified as "nebulae" were actually galaxies beyond the Milky Way. He used the strong direct relationship between a classical Cepheid variable's luminosity and pulsation period (discovered in 1908 by Henrietta Swan Leavitt) for scaling galactic and extragalactic distances.
A non-standard cosmology is any physical cosmological model of the universe that was, or still is, proposed as an alternative to the then-current standard model of cosmology. The term non-standard is applied to any theory that does not conform to the scientific consensus. Because the term depends on the prevailing consensus, the meaning of the term changes over time. For example, hot dark matter would not have been considered non-standard in 1990, but would have been in 2010. Conversely, a non-zero cosmological constant resulting in an accelerating universe would have been considered non-standard in 1990, but is part of the standard cosmology in 2010.
Several major cosmological disputes have occurred throughout the history of cosmology. One of the earliest was the Copernican Revolution, which established the heliocentric model of the Solar System. More recent was the Great Debate of 1920, in the aftermath of which the Milky Way's status as but one of the Universe's many galaxies was established. From the 1940s to the 1960s, the astrophysical community was equally divided between supporters of the Big Bang theory and supporters of a rival steady state universe; this is currently decided in favour of the Big Bang theory by advances in observational cosmology in the late 1960s. Nevertheless, there remained vocal detractors of the Big Bang theory including Fred Hoyle, Jayant Narlikar, Halton Arp, and Hannes Alfvén, whose cosmologies were relegated to the fringes of astronomical research. The few Big Bang opponents still active today often ignore well-established evidence from newer research, and as a consequence, today non-standard cosmologies that reject the Big Bang entirely are rarely published in peer-reviewed science journals but appear online in marginal journals and private websites.
A radio galaxy is a galaxy with giant regions of radio emission extending well beyond its visible structure. These energetic radio lobes are powered by jets from its active galactic nucleus. They have luminosities up to 10 W at radio wavelengths between 10 MHz and 100 GHz. The radio emission is due to the synchrotron process. The observed structure in radio emission is determined by the interaction between twin jets and the external medium, modified by the effects of relativistic beaming. The host galaxies are almost exclusively large elliptical galaxies. Radio-loud active galaxies can be detected at large distances, making them valuable tools for observational cosmology. Recently, much work has been done on the effects of these objects on the intergalactic medium, particularly in galaxy groups and clusters.
The term "radio galaxy" is often used to refer to the entire jet system, rather than solely to its host galaxy. Some scientists consider the term "black hole jet system" more accurate and less confusing. Radio galaxies that reach the size of around 0.7 megaparsecs or more, are commonly called "giant radio galaxies".