Granitic in the context of Tonalite


Granitic in the context of Tonalite

Granitic Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Granitic in the context of "Tonalite"


⭐ Core Definition: Granitic

A granitoid is a broad term referring to a diverse group of coarse-grained igneous rocks that are widely distributed across the globe, covering a significant portion of the Earth's exposed surface and constituting a large part of the continental crust. These rocks are primarily composed of quartz, plagioclase, and alkali feldspar. Granitoids range from plagioclase-rich tonalites to alkali-rich syenites and from quartz-poor monzonites to quartz-rich quartzolites. As only two of the three defining mineral groups (quartz, plagioclase, and alkali feldspar) need to be present for the rock to be called a granitoid, foid-bearing rocks, which predominantly contain feldspars but no quartz, are also granitoids.

↓ Menu
HINT:

In this Dossier

Granitic in the context of Rock fragment

A rock fragment, in sedimentary geology, is a sand-sized particle or sand grain that is made up of multiple grains that are connected on the grain scale. These can include grains which are sand-sized themselves (a granitic rock fragment), or finer-grained materials (shale fragments). This definition is used for QFR ternary diagrams, provenance analysis, and in the Folk classification scheme, mainly in sandstones.

View the full Wikipedia page for Rock fragment
↑ Return to Menu

Granitic in the context of Eastern Pilbara craton

The Eastern Pilbara Craton is the eastern portion of the Pilbara Craton located in Western Australia. This region contains variably metamorphosed mafic and ultramafic greenstone belt rocks, intrusive granitic dome structures, and volcanic sedimentary rocks. These greenstone belts worldwide are thought to be the remnants of ancient volcanic belts, and are subject to much debate in today's scientific community. Areas such as Isua and Barberton which have similar lithologies and ages as Pilbara have been argued to be subduction accretion arcs, while others suggest that they are the result of vertical tectonics. This debate is crucial to investigating when/how plate tectonics began on Earth. The Pilbara Craton along with the Kaapvaal Craton are the only remaining areas of the Earth with pristine 3.6–2.5 Ga crust. The extremely old and rare nature of this crustal region makes it a valuable resource in the understanding of the evolution of the Archean Earth.

View the full Wikipedia page for Eastern Pilbara craton
↑ Return to Menu

Granitic in the context of Trans-Hudson orogeny

The Trans-Hudson orogeny or Trans-Hudsonian orogeny was the major mountain building event (orogeny) that formed the Precambrian Canadian Shield and the North American Craton (also called Laurentia), forging the initial North American continent. It gave rise to the Trans-Hudson orogen (THO), or Trans-Hudson Orogen Transect (THOT), (also referred to as the Trans-Hudsonian Suture Zone (THSZ) or Trans-Hudson suture) which is the largest Paleoproterozoic orogenic belt in the world. It consists of a network of belts that were formed by Proterozoic crustal accretion and the collision of pre-existing Archean continents. The event occurred 2.0–1.8 billion years ago.

The Trans-Hudson orogen sutured together the Hearne-Rae, Superior, and Wyoming cratons to form the cratonic core of North America in a network of Paleoproterozoic orogenic belts. These orogenic belts include the margins of at least nine independent microcontinents that were themselves sections of at least three former major supercontinents, including Laurasia, Pangaea and Kenorland (ca. 2.7 Ga), and contain parts of some of the oldest cratonic continental crust on Earth. These old cratonic blocks, along with accreted island arc terranes and intraoceanic deposits from earlier Proterozoic and Mesozoic oceans and seaways, were sutured together in the Trans-Hudson Orogen (THO) and resulted in extensive folding and thrust faulting along with metamorphism and hundreds of huge granitic intrusions.

View the full Wikipedia page for Trans-Hudson orogeny
↑ Return to Menu