Gradient descent in the context of Iterative method


Gradient descent in the context of Iterative method

Gradient descent Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Gradient descent in the context of "Iterative method"


⭐ Core Definition: Gradient descent

Gradient descent is a method for unconstrained mathematical optimization. It is a first-order iterative algorithm for minimizing a differentiable multivariate function.

The idea is to take repeated steps in the opposite direction of the gradient (or approximate gradient) of the function at the current point, because this is the direction of steepest descent. Conversely, stepping in the direction of the gradient will lead to a trajectory that maximizes that function; the procedure is then known as gradient ascent.It is particularly useful in machine learning for minimizing the cost or loss function. Gradient descent should not be confused with local search algorithms, although both are iterative methods for optimization.

↓ Menu
HINT:

In this Dossier

Gradient descent in the context of Gradient

In vector calculus, the gradient of a scalar-valued differentiable function of several variables is the vector field (or vector-valued function) whose value at a point gives the direction and the rate of fastest increase. The gradient transforms like a vector under change of basis of the space of variables of . If the gradient of a function is non-zero at a point , the direction of the gradient is the direction in which the function increases most quickly from , and the magnitude of the gradient is the rate of increase in that direction, the greatest absolute directional derivative. Further, a point where the gradient is the zero vector is known as a stationary point. The gradient thus plays a fundamental role in optimization theory, where it is used to minimize a function by gradient descent. In coordinate-free terms, the gradient of a function may be defined by:

View the full Wikipedia page for Gradient
↑ Return to Menu

Gradient descent in the context of Training data

In machine learning, a common task is the study and construction of algorithms that can learn from and make predictions on data. Such algorithms function by making data-driven predictions or decisions, through building a mathematical model from input data. These input data used to build the model are usually divided into multiple data sets. In particular, three data sets are commonly used in different stages of the creation of the model: training, validation, and testing sets.

The model is initially fit on a training data set, which is a set of examples used to fit the parameters (e.g. weights of connections between neurons in artificial neural networks) of the model. The model (e.g. a naive Bayes classifier) is trained on the training data set using a supervised learning method, for example using optimization methods such as gradient descent or stochastic gradient descent. In practice, the training data set often consists of pairs of an input vector (or scalar) and the corresponding output vector (or scalar), where the answer key is commonly denoted as the target (or label). The current model is run with the training data set and produces a result, which is then compared with the target, for each input vector in the training data set. Based on the result of the comparison and the specific learning algorithm being used, the parameters of the model are adjusted. The model fitting can include both variable selection and parameter estimation.

View the full Wikipedia page for Training data
↑ Return to Menu

Gradient descent in the context of Simulated annealing

Simulated annealing (SA) is a probabilistic technique for approximating the global optimum of a given function. Specifically, it is a metaheuristic to approximate global optimization in a large search space for an optimization problem. For large numbers of local optima, SA can find the global optimum. It is often used when the search space is discrete (for example the traveling salesman problem, the boolean satisfiability problem, protein structure prediction, and job-shop scheduling). For problems where a fixed amount of computing resource is available, finding an approximate global optimum may be more relevant than attempting to find a precise local optimum. In such cases, SA may be preferable to exact algorithms such as gradient descent or branch and bound. The problems solved by SA are currently formulated by an objective function of many variables, subject to several mathematical constraints. In practice, a constraint violation can be penalized as part of the objective function.

Similar techniques have been independently introduced on several occasions, including Pincus (1970), Khachaturyan et al. (1979, 1981), Kirkpatrick, Gelatt and Vecchi (1983), and Cerny (1985). In 1983, this approach was used by Kirkpatrick, Gelatt Jr., and Vecchi for a solution of the traveling salesman problem. They also proposed its current name, simulated annealing.

View the full Wikipedia page for Simulated annealing
↑ Return to Menu