Glory (optical phenomenon) in the context of "Moonlight"

Play Trivia Questions online!

or

Skip to study material about Glory (optical phenomenon) in the context of "Moonlight"

Ad spacer

⭐ Core Definition: Glory (optical phenomenon)

A glory is an optical phenomenon, resembling an iconic saint's halo around the shadow of the observer's head, caused by sunlight or (more rarely) moonlight interacting with the tiny water droplets that comprise mist or clouds. The glory consists of one or more concentric, successively dimmer rings, each of which is red on the outside and bluish towards the centre. Due to its appearance, the phenomenon is sometimes mistaken for a circular rainbow, but the latter has a much larger diameter and is caused by different physical processes.

Glories arise due to wave interference of light internally refracted within small droplets.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Glory (optical phenomenon) in the context of Backscatter

In physics, backscatter (or backscattering) is the reflection of waves, particles, or signals back to the direction from which they came. It is usually a diffuse reflection due to scattering, as opposed to specular reflection as from a mirror, although specular backscattering can occur at normal incidence with a surface. Backscattering has important applications in astronomy, photography, and medical ultrasonography. The opposite effect is forward scatter, e.g. when a translucent material like a cloud diffuses sunlight, giving soft light.

↑ Return to Menu

Glory (optical phenomenon) in the context of Atmospheric phenomenon

↑ Return to Menu

Glory (optical phenomenon) in the context of Antisolar point

The antisolar point is the abstract point on the celestial sphere directly opposite the Sun from an observer's perspective. This means that the antisolar point lies above the horizon when the Sun is below it, and vice versa. On a sunny day, the antisolar point can be easily found; it is located within the shadow of the observer's head. Like the zenith and nadir, the antisolar point is not fixed in three-dimensional space, but is defined relative to the observer. Each observer has an antisolar point that moves as the observer changes position.

The antisolar point forms the geometric center of several optical phenomena, including subhorizon haloes, rainbows, glories, the Brocken spectre, and heiligenschein. Occasionally, around sunset or sunrise, anticrepuscular rays appear to converge toward the antisolar point near the horizon. However, this is an optical illusion caused by perspective; in reality, the "rays" (i.e. bands of shadow) run near-parallel to each other.

↑ Return to Menu

Glory (optical phenomenon) in the context of Brocken spectre

A Brocken spectre (British English; American spelling: Brocken specter; German: Brockengespenst), also called Brocken bow, mountain spectre, or spectre of the Brocken is the magnified (and apparently enormous) shadow of an observer cast in mid air upon any type of cloud opposite a strong light source. The figure's head can be surrounded by a bright area called Heiligenschein, or halo-like rings of rainbow-coloured light forming a glory, which appear opposite the Sun's direction when uniformly sized water droplets in clouds refract and backscatter sunlight.

The phenomenon can appear on any misty mountainside, cloud bank, or be seen from an aircraft, but the frequent fogs and low-altitude accessibility of the Brocken, the highest peak of the Harz Mountains in Germany, have created a local legend from which the phenomenon draws its name. The Brocken spectre was observed and described by Johann Silberschlag in 1780, and has often been recorded in literature about the region.

↑ Return to Menu