Globular cluster in the context of M87*


Globular cluster in the context of M87*

Globular cluster Study page number 1 of 3

Play TriviaQuestions Online!

or

Skip to study material about Globular cluster in the context of "M87*"


⭐ Core Definition: Globular cluster

A globular cluster is a spheroidal conglomeration of stars that is bound together by gravity, with a higher concentration of stars towards its center. It can contain anywhere from tens of thousands to many millions of member stars, all orbiting in a stable, compact formation. Globular clusters are similar in form to dwarf spheroidal galaxies, and though globular clusters were long held to be the more luminous of the two, discoveries of outliers had made the distinction between the two less clear by the early 21st century. Their name is derived from Latin globulus (small sphere). Globular clusters are occasionally known simply as "globulars".

Although one globular cluster, Omega Centauri, was observed in antiquity and long thought to be a star, recognition of the clusters' true nature came with the advent of telescopes in the 17th century. In early telescopic observations, globular clusters appeared as fuzzy blobs, leading French astronomer Charles Messier to include many of them in his catalog of astronomical objects that he thought could be mistaken for comets. Using larger telescopes, 18th-century astronomers recognized that globular clusters are groups of many individual stars. Early in the 20th century the distribution of globular clusters in the sky was some of the first evidence that the Sun is far from the center of the Milky Way.

↓ Menu
HINT:

In this Dossier

Globular cluster in the context of Elliptical galaxy

An elliptical galaxy is a type of galaxy with an approximately ellipsoidal shape and a smooth, nearly featureless image. They are one of the three main classes of galaxy described by Edwin Hubble in his Hubble sequence and 1936 work The Realm of the Nebulae, along with spiral and lenticular galaxies. Elliptical (E) galaxies are, together with lenticular galaxies (S0) with their large-scale disks, and ES galaxies with their intermediate scale disks, a subset of the "early-type" galaxy population.

Most elliptical galaxies are composed of older, low-mass stars, with a sparse interstellar medium, and they tend to be surrounded by large numbers of globular clusters. Star formation activity in elliptical galaxies is typically minimal; they may, however, undergo brief periods of star formation when merging with other galaxies. Elliptical galaxies are believed to make up approximately 10–15% of galaxies in the Virgo Supercluster, and they are not the dominant type of galaxy in the universe overall. They are preferentially found close to the centers of galaxy clusters.

View the full Wikipedia page for Elliptical galaxy
↑ Return to Menu

Globular cluster in the context of Spiral galaxy

Spiral galaxies form a class of galaxy originally described by Edwin Hubble in his 1936 work The Realm of the Nebulae and, as such, form part of the Hubble sequence. Most spiral galaxies consist of a flat, rotating disk containing stars, gas and dust, and a central concentration of stars known as the bulge. These are often surrounded by a much fainter halo of stars, many of which reside in globular clusters.

Spiral galaxies are named by their spiral structures that extend from the center into the galactic disk. The spiral arms are sites of ongoing star formation and are brighter than the surrounding disc because of the young, hot OB stars that inhabit them.

View the full Wikipedia page for Spiral galaxy
↑ Return to Menu

Globular cluster in the context of Central massive object

A central massive object (CMO) is a high mass object or cluster of objects at the centre of a large star system, such as a galaxy or globular cluster. In the case of the former, the CMO may be a supermassive black hole, a nuclear star cluster, or even both together.

The most massive galaxies are thought to always contain a supermassive black hole (SBH); these galaxies do not contain nuclear star clusters, and the CMO is identified with the SBH. Fainter galaxies usually contain a nuclear star cluster (NSC). In most of these galaxies, it is not known whether a supermassive black hole is present, and the CMO is identified with the NSC. A few galaxies, for instance the Milky Way and NGC 4395, are known to contain both a SBH and a NSC.

View the full Wikipedia page for Central massive object
↑ Return to Menu

Globular cluster in the context of Star cluster

A star cluster is a group of stars held together by self-gravitation. Two main types of star clusters can be distinguished: globular clusters, tight groups of ten thousand to millions of old stars which are gravitationally bound; and open clusters, less tight groups of stars, generally containing fewer than a few hundred members.

As they move through the galaxy, over time, open clusters become disrupted by the gravitational influence of giant molecular clouds, so that the clusters we observe are often young. Even though they are no longer gravitationally bound, they will continue to move in broadly the same direction through space and are then known as stellar associations, sometimes referred to as moving groups. Globular clusters, with more members and more mass, remain intact for far longer and the globular clusters observed are usually billions of years old.

View the full Wikipedia page for Star cluster
↑ Return to Menu

Globular cluster in the context of NGC 4526

NGC 4526 (also listed as NGC 4560) is a lenticular galaxy with an embedded dusty disc, located approximately 55 million light-years from the Solar System in the Virgo constellation and discovered on 13 April 1784 by William Herschel. Herschel observed it again on 28 December 1785, resulting in the galaxy being entered twice into the New General Catalogue.

The galaxy is seen nearly edge-on. The morphological classification is SAB(s)0°, which indicates a lenticular structure with a weak bar across the center and pure spiral arms without a ring. It belongs to the Virgo Cluster and is one of the brightest known lenticular galaxies.In the galaxy's outer halo, globular cluster orbital velocities indicate abnormal poverty of dark matter: only 43±18% of the mass within 5 effective radii.

View the full Wikipedia page for NGC 4526
↑ Return to Menu

Globular cluster in the context of Satellite galaxy

A satellite galaxy is a smaller companion galaxy that travels on bound orbits within the gravitational potential of a more massive and luminous host galaxy (also known as the primary galaxy). Satellite galaxies and their constituents are bound to their host galaxy, in the same way that planets within the Solar System are gravitationally bound to the Sun. While most satellite galaxies are dwarf galaxies, satellite galaxies of large galaxy clusters can be much more massive. The Milky Way is orbited by about fifty satellite galaxies, the largest of which is the Large Magellanic Cloud.

Moreover, satellite galaxies are not the only astronomical objects that are gravitationally bound to larger host galaxies (see globular clusters). For this reason, astronomers have defined galaxies as gravitationally bound collections of stars that exhibit properties that cannot be explained by a combination of baryonic matter (i.e. ordinary matter) and Newton's laws of gravity. For example, measurements of the orbital speed of stars and gas within spiral galaxies result in a velocity curve that deviates significantly from the theoretical prediction. This observation has motivated various explanations such as the theory of dark matter and modifications to Newtonian dynamics. Therefore, despite also being satellites of host galaxies, globular clusters should not be mistaken for satellite galaxies. Satellite galaxies are not only more extended and diffuse compared to globular clusters, but are also enshrouded in massive dark matter halos that are thought to have been endowed to them during the formation process.

View the full Wikipedia page for Satellite galaxy
↑ Return to Menu

Globular cluster in the context of Elliptical galaxy M87

Messier 87 (also known as Virgo A or NGC 4486, generally abbreviated to M87) is a supergiant elliptical galaxy in the constellation Virgo that contains several trillion stars. One of the largest and most massive galaxies in the local universe, it has a large population of globular clusters—about 15,000 compared with the 150–200 orbiting the Milky Way—and a jet of energetic plasma that originates at the core and extends at least 1,500 parsecs (4,900 light-years), traveling at a relativistic speed. It is one of the brightest radio sources in the sky and a popular target for both amateur and professional astronomers.

The French astronomer Charles Messier discovered M87 in 1781, and cataloged it as a nebula. M87 is about 16.4 million parsecs (53 million light-years) from Earth and is the second-brightest galaxy within the northern Virgo Cluster, having many satellite galaxies. Unlike a disk-shaped spiral galaxy, M87 has no distinctive dust lanes. Instead, it has an almost featureless, ellipsoidal shape typical of most giant elliptical galaxies, diminishing in luminosity with distance from the center. Forming around one-sixth of its mass, M87's stars have a nearly spherically symmetric distribution. Their population density decreases with increasing distance from the core. It has an active supermassive black hole at its core, which forms the primary component of an active galactic nucleus. The black hole was imaged using data collected in 2017 by the Event Horizon Telescope (EHT), with a final, processed image released on 10 April 2019. In March 2021, the EHT Collaboration presented, for the first time, a polarized-based image of the black hole which may help better reveal the forces giving rise to quasars.

View the full Wikipedia page for Elliptical galaxy M87
↑ Return to Menu

Globular cluster in the context of Population III star

In 1944, Walter Baade categorized groups of stars within the Milky Way into stellar populations.In the abstract of the article by Baade, he recognizes that Jan Oort originally conceived this type of classification in 1926.

Baade observed that bluer stars were strongly associated with the spiral arms, and yellow stars dominated near the central galactic bulge and within globular star clusters. Two main divisions were deemed population I and population II stars, with another newer, hypothetical division called population III added in 1978.

View the full Wikipedia page for Population III star
↑ Return to Menu

Globular cluster in the context of Metallicity

In astronomy, metallicity is the abundance of elements present in an object that are heavier than hydrogen and helium. Most of the normal currently detectable (i.e. non-dark) matter in the universe is either hydrogen or helium, and astronomers use the word metals as convenient shorthand for all elements except hydrogen and helium. This word-use is distinct from the conventional chemical or physical definition of a metal as an electrically conducting element. Stars and nebulae with relatively high abundances of heavier elements are called metal-rich when discussing metallicity, even though many of those elements are called nonmetals in chemistry.

View the full Wikipedia page for Metallicity
↑ Return to Menu

Globular cluster in the context of Fornax Dwarf

The Fornax Dwarf Spheroidal (formerly known as the Fornax System) is a dwarf elliptical galaxy in the constellation Fornax that was discovered in 1938 by Harlow Shapley. He discovered it while he was in South Africa on photographic plates taken by the 24 inch (61 cm) Bruce refractor at Boyden Observatory, shortly after he discovered the Sculptor Dwarf Galaxy.

The galaxy is a satellite of the Milky Way and contains six globular clusters, an unusually high number for its size; the largest, NGC 1049, was discovered before the galaxy itself. The galaxy is also receding from the Milky Way at 53 km/s. It mostly contains population II stars, but also has populations of young and intermediate age.

View the full Wikipedia page for Fornax Dwarf
↑ Return to Menu

Globular cluster in the context of Stellar association

A stellar association is a very loose star cluster, looser than both open clusters and globular clusters. Stellar associations will normally contain from 10 to 100 or more visible stars. An association is primarily identified by commonalities in its member stars' movement vectors, ages, and chemical compositions. These shared features indicate that the members share a common origin. Nevertheless, they have become gravitationally unbound, unlike star clusters, and the member stars will drift apart over millions of years, becoming a moving group as they scatter throughout their neighborhood within the galaxy.

Stellar associations were discovered by Victor Ambartsumian in 1947. The conventional name for an association uses the names or abbreviations of the constellation (or constellations) in which they are located; the association type, and, sometimes, a numerical identifier.

View the full Wikipedia page for Stellar association
↑ Return to Menu

Globular cluster in the context of Serpens

Serpens (Ancient Greek: Ὄφις, romanizedÓphis, lit.'the Serpent') is a constellation in the northern celestial hemisphere. One of the 48 constellations listed by the 2nd-century astronomer Ptolemy, it remains one of the 88 modern constellations designated by the International Astronomical Union. It is unique among the modern constellations in being split into two non-contiguous parts, Serpens Caput (Serpent Head) to the west and Serpens Cauda (Serpent Tail) to the east. Between these two halves lies the constellation of Ophiuchus, the "Serpent-Bearer". In figurative representations, the body of the serpent is represented as passing behind Ophiuchus between Mu Serpentis in Serpens Caput and Nu Serpentis in Serpens Cauda.

The brightest star in Serpens is the red giant star Alpha Serpentis, or Unukalhai, in Serpens Caput, with an apparent magnitude of 2.63. Also located in Serpens Caput are the naked-eye globular cluster Messier 5 and the naked-eye variables R Serpentis and Tau Serpentis. Notable extragalactic objects include Seyfert's Sextet, one of the densest galaxy clusters known; Arp 220, the prototypical ultraluminous infrared galaxy; and Hoag's Object, the most famous of the very rare class of galaxies known as ring galaxies.

View the full Wikipedia page for Serpens
↑ Return to Menu

Globular cluster in the context of Open cluster

An open cluster is a type of star cluster made of tens to a few thousand stars that were formed from the same giant molecular cloud and have roughly the same age. More than 1,100 open clusters have been discovered within the Milky Way galaxy, and many more are thought to exist. Each one is loosely bound by mutual gravitational attraction and becomes disrupted by close encounters with other clusters and clouds of gas as they orbit the Galactic Center. This can result in a loss of cluster members through internal close encounters and a dispersion into the main body of the galaxy. Open clusters generally survive for a few hundred million years, with the most massive ones surviving for a few billion years. In contrast, the more massive globular clusters of stars exert a stronger gravitational attraction on their members, and can survive for longer. Open clusters have been found only in spiral and irregular galaxies, in which active star formation is occurring.

Young open clusters may be contained within the molecular cloud from which they formed, illuminating it to create an H II region. Over time, radiation pressure from the cluster will disperse the molecular cloud. Typically, about 10% of the mass of a gas cloud will coalesce into stars before radiation pressure drives the rest of the gas away.

View the full Wikipedia page for Open cluster
↑ Return to Menu

Globular cluster in the context of Asymptotic giant branch

The asymptotic giant branch (AGB) is a region of the Hertzsprung–Russell diagram populated by evolved cool luminous stars. This is a period of stellar evolution undertaken by all low- to intermediate-mass stars (about 0.5 to 8 solar masses) late in their lives.

Observationally, an asymptotic-giant-branch star will appear as a bright red giant with a luminosity ranging up to thousands of times greater than the Sun. Its interior structure is characterized by a central and largely inert core of carbon and oxygen, a shell where helium is undergoing fusion to form carbon (known as helium burning), another shell where hydrogen is undergoing fusion forming helium (known as hydrogen burning), and a very large envelope of material of composition similar to main-sequence stars (except in the case of carbon stars).

View the full Wikipedia page for Asymptotic giant branch
↑ Return to Menu

Globular cluster in the context of Bright Star Catalogue

The Bright Star Catalogue, also known as the Yale Catalogue of Bright Stars, Yale Bright Star Catalogue, or just YBS, is a star catalogue that lists all stars of stellar magnitude 6.5 or brighter, which is roughly every star visible to the naked eye from Earth. The catalog lists 9,110 objects, of which 9,095 are stars, 11 are novae or supernovae (which were "bright stars" only at the time when they were at their peak), and four are non-stellar objects which are the globular clusters 47 Tucanae (designated HR 95) and NGC 2808 (HR 3671), and the open clusters NGC 2281 (HR 2496) and Messier 67 (HR 3515).

The catalogue is fixed in number of entries, but its data is maintained, and it is appended with a comments section about the objects that has been steadily enhanced. The abbreviation for the catalog as a whole is BS or YBS but all citations of stars it indexes use HR before the catalog number, a homage to the catalog's direct predecessor, published in 1908, named the Harvard Revised Photometry Catalogue.

View the full Wikipedia page for Bright Star Catalogue
↑ Return to Menu