Glivenko–Cantelli theorem in the context of Independent and identically distributed random variables


Glivenko–Cantelli theorem in the context of Independent and identically distributed random variables

⭐ Core Definition: Glivenko–Cantelli theorem

In the theory of probability, the Glivenko–Cantelli theorem (sometimes referred to as the fundamental theorem of statistics), named after Valery Ivanovich Glivenko and Francesco Paolo Cantelli, describes the asymptotic behaviour of the empirical distribution function as the number of independent and identically distributed observations grows. Specifically, the empirical distribution function converges uniformly to the true distribution function almost surely.

The uniform convergence of more general empirical measures becomes an important property of the Glivenko–Cantelli classes of functions or sets. The Glivenko–Cantelli classes arise in Vapnik–Chervonenkis theory, with applications to machine learning. Applications can be found in econometrics making use of M-estimators.

↓ Menu
HINT:

In this Dossier

Glivenko–Cantelli theorem in the context of Statistical distribution

In statistics, an empirical distribution function (a.k.a. an empirical cumulative distribution function, eCDF) is the distribution function associated with the empirical measure of a sample. This cumulative distribution function is a step function that jumps up by 1/n at each of the n data points. Its value at any specified value of the measured variable is the fraction of observations of the measured variable that are less than or equal to the specified value.

The empirical distribution function is an estimate of the cumulative distribution function that generated the points in the sample. It converges with probability 1 to that underlying distribution, according to the Glivenko–Cantelli theorem. A number of results exist to quantify the rate of convergence of the empirical distribution function to the underlying cumulative distribution function.

View the full Wikipedia page for Statistical distribution
↑ Return to Menu