Giant tube worm in the context of "Bivalve"

Play Trivia Questions online!

or

Skip to study material about Giant tube worm in the context of "Bivalve"

Ad spacer

⭐ Core Definition: Giant tube worm

Riftia pachyptila is a marine invertebrate in the phylum of segmented worms, Annelida, which include the other "polychaete" tube worms commonly found in shallow water marine environments and coral reefs. R. pachyptila lives in the deep sea, growing on geologically active regions of the Pacific Ocean's seafloor, such as near hydrothermal vents. These vents provide a natural ambient temperature ranging from 2 to 30 degrees Celsius (36 to 86 °F), and emit large amounts of chemicals such as hydrogen sulfide, which this species can tolerate at extremely high levels. These worms can reach a length of 3 m (9 ft 10 in), and their tubular bodies have a diameter of 4 cm (1.6 in).

Historically, the genus Riftia (which only contains this species) was placed within the phyla Pogonophora and Vestimentifera. It has been informally known as the giant tube worm or the giant beardworm; however, the former name is also used for the largest living species of shipworm, Kuphus polythalamius, which is a type of bivalve (a group of molluscs which includes clams, mussels, and scallops).

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Giant tube worm in the context of Hydrothermal vent

Hydrothermal vents are fissures on the seabed from which geothermally heated water discharges. They are commonly found near volcanically active places, areas where tectonic plates are moving apart at mid-ocean ridges, ocean basins, and hotspots. The dispersal of hydrothermal fluids throughout the global ocean at active vent sites creates hydrothermal plumes. Hydrothermal deposits are rocks and mineral ore deposits formed by the action of hydrothermal vents.

Hydrothermal vents exist because the Earth is both geologically active and has large amounts of water on its surface and within its crust. Under the sea, they may form features called black smokers or white smokers, which deliver a wide range of elements to the world's oceans, thus contributing to global marine biogeochemistry. Relative to the majority of the deep sea, the areas around hydrothermal vents are biologically more productive, often hosting complex communities fueled by the chemicals dissolved in the vent fluids. Chemosynthetic bacteria and archaea found around hydrothermal vents form the base of the food chain, supporting diverse organisms including giant tube worms, clams, limpets, and shrimp. Active hydrothermal vents are thought to exist on Jupiter's moon Europa and Saturn's moon Enceladus, and it is speculated that ancient hydrothermal vents once existed on Mars.

↑ Return to Menu

Giant tube worm in the context of Lithotroph

Lithotrophs are a diverse group of organisms using an inorganic substrate (usually of mineral origin) to obtain reducing equivalents for use in biosynthesis (e.g., carbon dioxide fixation) or energy conservation (i.e., ATP production) via aerobic or anaerobic respiration. While lithotrophs in the broader sense include photolithotrophs like plants, chemolithotrophs are exclusively microorganisms; no known macrofauna possesses the ability to use inorganic compounds as electron sources. Macrofauna and lithotrophs can form symbiotic relationships, in which case the lithotrophs are called "prokaryotic symbionts". An example of this is chemolithotrophic bacteria in giant tube worms; or plastids, which are organelles within plant cells that may have evolved from photolithotrophic cyanobacteria-like organisms. Chemolithotrophs belong to the domains Bacteria and Archaea. The term "lithotroph" was created from the Greek terms 'lithos' (rock) and 'troph' (consumer), meaning "eaters of rock". Many but not all lithoautotrophs are extremophiles.

The last universal common ancestor of life is thought to be a chemolithotroph. Different from a lithotroph is an organotroph, an organism which obtains its reducing agents from the catabolism of organic compounds.

↑ Return to Menu

Giant tube worm in the context of Siboglinidae

Siboglinidae is a family of polychaete annelid worms whose members made up the former phyla Pogonophora and Vestimentifera (the giant tube worms). The family is composed of around 100 species of vermiform creatures which live in thin tubes buried in sediment (Pogonophora) or in tubes attached to hard substratum (Vestimentifera) at ocean depths ranging from 100 to 10,000 m (300 to 32,800 ft). They can also be found in association with hydrothermal vents, methane seeps, sunken plant material, and whale carcasses.

The first specimen was dredged from the waters of Indonesia in 1900. These specimens were given to French zoologist Maurice Caullery, who studied them for nearly 50 years.

↑ Return to Menu