Geotechnical engineering in the context of Civil engineering


Geotechnical engineering in the context of Civil engineering

Geotechnical engineering Study page number 1 of 2

Play TriviaQuestions Online!

or

Skip to study material about Geotechnical engineering in the context of "Civil engineering"


⭐ Core Definition: Geotechnical engineering

Geotechnical engineering, also known as geotechnics, is the branch of civil engineering concerned with the engineering behavior of earth materials. It uses the principles of soil mechanics and rock mechanics to solve its engineering problems. It also relies on knowledge of geology, hydrology, geophysics, and other related sciences.

Geotechnical engineering has applications in military engineering, mining engineering, petroleum engineering, coastal engineering, and offshore construction. The fields of geotechnical engineering and engineering geology have overlapping knowledge areas. However, while geotechnical engineering is a specialty of civil engineering, engineering geology is a specialty of geology.

↓ Menu
HINT:

In this Dossier

Geotechnical engineering in the context of Academic writing

Academic writing or scholarly writing refers primarily to nonfiction writing that is produced as part of academic work in accordance with the standards of a particular academic subject or discipline, including:

Academic writing typically uses a more formal tone and follows specific conventions. Central to academic writing is its intertextuality, or an engagement with existing scholarly conversations through meticulous citing or referencing of other academic work, which underscores the writer's participation in the broader discourse community. However, the exact style, content, and organization of academic writing can vary depending on the specific genre and publication method. Despite this variation, all academic writing shares some common features, including a commitment to intellectual integrity, the advancement of knowledge, and the rigorous application of disciplinary methodologies.

View the full Wikipedia page for Academic writing
↑ Return to Menu

Geotechnical engineering in the context of Geomorphology

Geomorphology (from Ancient Greek γῆ () 'earth' μορφή (morphḗ) 'form' and λόγος (lógos) 'study') is the scientific study of the origin and evolution of topographic and bathymetric features generated by physical, chemical or biological processes operating at or near Earth's surface. Geomorphologists seek to understand why landscapes look the way they do, to understand landform and terrain history and dynamics and to predict changes through a combination of field observations, physical experiments and numerical modeling. Geomorphologists work within disciplines such as physical geography, geology, geodesy, engineering geology, archaeology, climatology, and geotechnical engineering. This broad base of interests contributes to many research styles and interests within the field.

View the full Wikipedia page for Geomorphology
↑ Return to Menu

Geotechnical engineering in the context of Mining engineering

Mining engineering is the extraction of minerals from the ground. It is associated with many other disciplines, such as mineral processing, exploration, excavation, geology, metallurgy, geotechnical engineering and surveying. A mining engineer may manage any phase of mining operations, from exploration and discovery of the mineral resources, through feasibility study, mine design, development of plans, production and operations to mine closure.

View the full Wikipedia page for Mining engineering
↑ Return to Menu

Geotechnical engineering in the context of Foundation (engineering)

In engineering, a foundation is the element of a structure which connects it to the ground or more rarely, water (as with floating structures), transferring loads from the structure to the ground. Foundations are generally considered either shallow or deep. Foundation engineering is the application of soil mechanics and rock mechanics (geotechnical engineering) in the design of foundation elements of structures.

View the full Wikipedia page for Foundation (engineering)
↑ Return to Menu

Geotechnical engineering in the context of Soil mechanics

Soil mechanics is a branch of soil physics and applied mechanics that describes the behavior of soils. It differs from fluid mechanics and solid mechanics in the sense that soils consist of a heterogeneous mixture of fluids (usually air and water) and particles (usually clay, silt, sand, and gravel) but soil may also contain organic solids and other matter. Along with rock mechanics, soil mechanics provides the theoretical basis for analysis in geotechnical engineering, a subdiscipline of civil engineering, and engineering geology, a subdiscipline of geology. Soil mechanics is used to analyze the deformations of and flow of fluids within natural and man-made structures that are supported on or made of soil, or structures that are buried in soils. Example applications are building and bridge foundations, retaining walls, dams, and buried pipeline systems. Principles of soil mechanics are also used in related disciplines such as geophysical engineering, coastal engineering, agricultural engineering, and hydrology.

This article describes the genesis and composition of soil, the distinction between pore water pressure and inter-granular effective stress, capillary action of fluids in the soil pore spaces, soil classification, seepage and permeability, time dependent change of volume due to squeezing water out of tiny pore spaces, also known as consolidation, shear strength and stiffness of soils. The shear strength of soils is primarily derived from friction between the particles and interlocking, which are very sensitive to the effective stress. The article concludes with some examples of applications of the principles of soil mechanics such as slope stability, lateral earth pressure on retaining walls, and bearing capacity of foundations.

View the full Wikipedia page for Soil mechanics
↑ Return to Menu

Geotechnical engineering in the context of Soil structure

In geotechnical engineering, soil structure describes the arrangement of the solid parts of the soil and of the pore space located between them. It is determined by how individual soil granules clump, bind together, and aggregate, resulting in the arrangement of soil pores between them. Soil has a major influence on water and air movement, biological activity, root growth and seedling emergence. There are several different types of soil structure. It is inherently a dynamic and complex system that is affected by different biotic and abiotic factors.

View the full Wikipedia page for Soil structure
↑ Return to Menu

Geotechnical engineering in the context of Trench

A trench is a type of excavation or depression in the ground that is generally deeper than it is wide (as opposed to a swale or a bar ditch), and narrow compared with its length (as opposed to a simple hole or pit).

In geology, trenches result from erosion by rivers or by geological movement of tectonic plates. In civil engineering, trenches are often created to install underground utilities such as gas, water, power and communication lines. In construction, trenches are dug for foundations of buildings, retaining walls and dams, and for cut-and-cover construction of tunnels. In archaeology, the "trench method" is used for searching and excavating ancient ruins or to dig into strata of sedimented material. In geotechnical engineering, trench investigations locate faults and investigate deep soil properties. In trench warfare, soldiers occupy trenches to protect them against weapons fire and artillery.

View the full Wikipedia page for Trench
↑ Return to Menu

Geotechnical engineering in the context of Seismic refraction

Seismic refraction is a geophysical principle governed by Snell's Law of refraction. The seismic refraction method utilizes the refraction of seismic waves by rock or soil layers to characterize the subsurface geologic conditions and geologic structure.

Seismic refraction is exploited in engineering geology, geotechnical engineering and exploration geophysics. Seismic refraction traverses (seismic lines) are performed using an array of seismographs or geophones and an energy source.

View the full Wikipedia page for Seismic refraction
↑ Return to Menu

Geotechnical engineering in the context of Caisson (engineering)

In geotechnical engineering, a caisson (/ˈksən, -sɒn/; borrowed from French caisson 'box', from Italian cassone 'large box', an augmentative of cassa) is a watertight retaining structure. It is used, for example, to work on the foundations of a bridge pier, for the construction of a concrete dam, or for the repair of ships.

Caissons are constructed in such a way that the water can be pumped out, keeping the work environment dry. When piers are being built using an open caisson, and it is not practical to reach suitable soil, friction pilings may be driven to form a suitable sub-foundation. These piles are connected by a foundation pad upon which the column pier is erected.

View the full Wikipedia page for Caisson (engineering)
↑ Return to Menu

Geotechnical engineering in the context of Slope failure

Slope stability refers to the condition of inclined soil or rock slopes to withstand or undergo movement; the opposite condition is called slope instability or slope failure. The stability condition of slopes is a subject of study and research in soil mechanics, geotechnical engineering, and engineering geology. Analyses are generally aimed at understanding the causes of an occurred slope failure, or the factors that can potentially trigger a slope movement, resulting in a landslide, as well as at preventing the initiation of such movement, slowing it down or arresting it through mitigation countermeasures.

The stability of a slope is essentially controlled by the ratio between the available shear strength and the acting shear stress, which can be expressed in terms of a safety factor if these quantities are integrated over a potential (or actual) sliding surface. A slope can be globally stable if the safety factor, computed along any potential sliding surface running from the top of the slope to its toe, is always larger than 1. The smallest value of the safety factor will be taken as representing the global stability condition of the slope. Similarly, a slope can be locally stable if a safety factor larger than 1 is computed along any potential sliding surface running through a limited portion of the slope (for instance only within its toe). Values of the global or local safety factors close to 1 (typically comprised between 1 and 1.3, depending on regulations) indicate marginally stable slopes that require attention, monitoring and/or an engineering intervention (slope stabilization) to increase the safety factor and reduce the probability of a slope movement.

View the full Wikipedia page for Slope failure
↑ Return to Menu

Geotechnical engineering in the context of Geotechnical investigation

Geotechnical investigations are performed by geotechnical engineers or engineering geologists to obtain information on the physical properties of soil earthworks and foundations for proposed structures and for repair of distress to earthworks and structures caused by subsurface conditions; this type of investigation is called a site investigation. Geotechnical investigations are also used to measure the thermal resistance of soils or backfill materials required for underground transmission lines, oil and gas pipelines, radioactive waste disposal, and solar thermal storage facilities. A geotechnical investigation will include surface exploration and subsurface exploration of a site. Sometimes, geophysical methods are used to obtain data about sites. Subsurface exploration usually involves soil sampling and laboratory tests of the soil samples retrieved.

Geotechnical investigations are very important before any structure can be built, ranging from a single house to a large warehouse, a multi-storey building, and infrastructure projects like bridges, high-speed rail, and metros.

View the full Wikipedia page for Geotechnical investigation
↑ Return to Menu

Geotechnical engineering in the context of Effective stress

Effective stress is a fundamental concept in soil mechanics and geotechnical engineering that describes the portion of total stress in a soil mass that is carried by the solid soil skeleton, rather than the pore water. It is crucial for understanding the mechanical behaviour of soils, as effective stress governs both the strength and volume change (deformation) of soil.

More formally, effective stress is defined as the stress that, for any given pore pressure , produces the same strain or strength response in a porous material (such as soil or rock) as would be observed in a dry sample where . In other words, it is the stress that controls the mechanical behaviour of a porous body regardless of pore pressure present. This concept applies broadly to granular media like sand, silt, and clay, as well as to porous materials such as rock, concrete, metal powders and biological tissues.

View the full Wikipedia page for Effective stress
↑ Return to Menu