Geostationary orbit in the context of "Satellite communications"

Play Trivia Questions online!

or

Skip to study material about Geostationary orbit in the context of "Satellite communications"

Ad spacer

⭐ Core Definition: Geostationary orbit

A geostationary orbit, also referred to as a (GEO), is a circular geosynchronous orbit 35,786 km (22,236 mi) in altitude above Earth's equator, 42,164 km (26,199 mi) in radius from Earth's center, and following the direction of Earth's rotation.

An object in such an orbit has an orbital period equal to Earth's rotational period, one sidereal day, and so to ground observers it appears motionless, in a fixed position in the sky. The concept of a geostationary orbit was popularised by the science fiction writer Arthur C. Clarke in the 1940s as a way to revolutionise telecommunications, and the first satellite to be placed in this kind of orbit was launched in 1963.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Geostationary orbit in the context of Land (economics)

In economics, land comprises all naturally occurring resources as well as geographic land. Examples include particular geographical locations, mineral deposits, forests, fish stocks, atmospheric quality, geostationary orbits, and portions of the electromagnetic spectrum. Supply of these resources is fixed.

↑ Return to Menu

Geostationary orbit in the context of Communications satellite

A communications satellite is an artificial satellite that relays and amplifies radio telecommunication signals via a transponder; it creates a communication channel between a source transmitter and a receiver at different locations on Earth. Communications satellites are used for television, telephone, radio, internet, and military applications. Some communications satellites are in geostationary orbit 22,236 miles (35,785 km) above the equator, so that the satellite appears stationary at the same point in the sky; therefore the satellite dish antennas of ground stations can be aimed permanently at that spot and do not have to move to track the satellite. But most form satellite constellations in low Earth orbit, where antennas on the ground have to follow the position of the satellites and switch between satellites frequently.

The radio waves used for telecommunications links travel by line of sight and so are obstructed by the curve of the Earth. The purpose of communications satellites is to relay the signal around the curve of the Earth allowing communication between widely separated geographical points. Communications satellites use a wide range of radio and microwave frequencies. To avoid signal interference, international organizations have regulations for which frequency ranges or "bands" certain organizations are allowed to use. This allocation of bands minimizes the risk of signal interference.

↑ Return to Menu

Geostationary orbit in the context of Space colonization

Space colonization (or extraterrestrial colonization) is the settlement or colonization of outer space and astronomical bodies. The concept in its broad sense has been applied to any permanent human presence in space, such as a space habitat or other extraterrestrial settlements. It may involve a process of occupation or control for exploitation, such as extraterrestrial mining.

Making territorial claims in space is prohibited by international space law, defining space as a common heritage. International space law has had the goal to prevent colonial claims and militarization of space, and has advocated the installation of international regimes to regulate access to and sharing of space, particularly for specific locations such as the limited space of geostationary orbit or the Moon. To date, no permanent space settlement other than temporary space habitats have been established, nor has any extraterrestrial territory or land been internationally claimed. Currently there are also no plans for building a space colony by any government. However, many proposals, speculations, and designs, particularly for extraterrestrial settlements have been made through the years, and a considerable number of space colonization advocates and groups are active. Currently, the dominant private launch provider SpaceX, has been the most prominent organization planning space colonization on Mars, though having not reached a development stage beyond launch and landing systems.

↑ Return to Menu

Geostationary orbit in the context of Orbital spaceflight

An orbital spaceflight (or orbital flight) is a spaceflight in which a spacecraft is placed on a trajectory where it could remain in space for at least one orbit. To do this around the Earth, it must be on a free trajectory which has an altitude at perigee (altitude at closest approach) around 80 kilometers (50 mi); this is the boundary of space as defined by NASA, the US Air Force and the FAA. To remain in orbit at this altitude requires an orbital speed of ~7.8 km/s. Orbital speed is slower for higher orbits, but attaining them requires greater delta-v. The Fédération Aéronautique Internationale has established the Kármán line at an altitude of 100 km (62 mi) as a working definition for the boundary between aeronautics and astronautics. This is used because at an altitude of about 100 km (62 mi), as Theodore von Kármán calculated, a vehicle would have to travel faster than orbital velocity to derive sufficient aerodynamic lift from the atmosphere to support itself.

Due to atmospheric drag, the lowest altitude at which an object in a circular orbit can complete at least one full revolution without propulsion is approximately 150 kilometres (93 mi).

↑ Return to Menu

Geostationary orbit in the context of Molniya (satellite)

The Molniya (Russian: Молния, IPA: [ˈmolnʲɪjə] , "Lightning") series satellites were military and communications satellites launched by the Soviet Union from 1965 to 1991, and by the Russian Federation from 1991 to 2004. These satellites used highly eccentric elliptical orbits known as Molniya orbits, which have a long dwell time over high latitudes. They are suited for communications purposes in polar regions, in the same way that geostationary satellites are used for equatorial regions.

There were 164 Molniya satellites launched, all in Molniya orbits with the exception of Molniya 1S which was launched into geostationary orbit for testing purposes.

↑ Return to Menu

Geostationary orbit in the context of Satellite dish

A satellite dish is a dish-shaped type of parabolic antenna designed to receive or transmit information by radio waves to or from a communication satellite. The term most commonly means a dish which receives direct-broadcast satellite television from a direct broadcast satellite in geostationary orbit.

↑ Return to Menu